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False neighbors and false strands: A reliable minimum embedding dimension algorithm
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The time-delay reconstruction of the state space of a system from observed scalar data requires a time lag
and an integer embedding dimension. We demonstrate a reliable method to estimate the minimum necessary
embedding dimension that improves upon previous methods by correcting for systematic effects due to tem-
poral oversampling, autocorrelation, and changing time lag. The method gives a sharp and reliable indication
of the proper dimension. With little computational cost, the method also distinguish easily between infinite-
dimensional colored noise—including noisy periodicity—and low-dimensional dynamics.
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I. INTRODUCTION alistic limit of an infinite amount of infinitely precise data,
. . . .._anytime delayT will work. In practice, of course, there are
One of the foundations of the analysis of chaotic t'meap%roximate zpper and Iowerplimits to the valuesTafhich
series is the Takens embedding theolfdn2] that allows us are acceptable.
to unfold the attractqr of a .system from observations \ye address the question “Given actual observed data,
of a single dynamical variable. Suppose that theyhatd. do we require to ensure a deterministic mapping?”
dynamical system which is the source of some obsergrom a purely topological point of view, there is no penalty
vations evolves in a multidimensional phase spa¢e)  as |ong as a sufficiently largh: is employed, but there is no
=[x1(n),X2(n), ... Xg(n)] asx(n+1)=F(x(n)), and that  penefit using a larger than necessary dimension. Practically,
we observe a scalar componentx¢h) or a scalar projection however, there may be a penalty associated with using too
of the x space:s(n) =S(x(n)). The theorem guarantees that |arge a value fordg. When dealing with finite amounts of
if we perform a correct time-delay embedding of this scalarfinite precision data, one would usually like to use as few
signal, we may construct @-dimensional space that inher- coordinates as possible. First, as one incredseghe noise
its many of the properties of the origindtdimensionalx  that inevitably accompanies any real signal contaminates all
space even though thatspace is unknown to us. The scalar components of the vectyr, and will populate every dimen-

data are replaced by the vectors sion whether or not there is a real signal there. This is obvi-
ously undesirable. Second, if one uses the reconstructed
y(n)=[s(n),s(n+T), ... s(n+(de—=1)T)] (1)  phase-space vectors to make empirical models for prediction

or control, then using unnecessarily high dimension has a
as the description of the dynamical system. Thissignificant penalty, especially as the computational cost and
de-dimensional space is the reconstructed state space. Wumber of free parameters of many estimation and prediction
y(n) T is the “reconstruction time delay,” an integer mul- methods scale exponentially with. Finally, an indication
tiple of the sampling time. The integdg is the “embedding  of the minimum embedding dimension puts an upper bound
dimension.” Whendg is large enough, the points in this re- on the dimensionality of the system. A strong empirical in-
constructed phase space are related to the original spaggation of a topologically satisfactory small embedding di-
through a diffeomorphism, namely, a smooth, differentiablemension provides evidence that the observed signal may
and invertible transformation. Many important properties ofhave, in fact, arisen from a low-dimensional dynamical sys-
the original dynamics are preserved, including that we haveem. These are the core issues discussed in this paper.
an implied deterministic time evolution in thespace corre- Our goal is to find the minimum necessary embedding
sponding to the unknown evolution in tkespace. That is, if dimension denotedg. Ding et al [3] demonstrated that the
x(n) is followed byx(n+1) in the evolution of the under- commonly used correlation dimension reaches its correct
lying system, then its counterpay{n) is followed byy(n  value, in principle, as soon as the trial embedding dimension
+1) in the reconstructed state space. Also since the originalg is an integer just greater than the correlation dimension of
orbits x(n) cannot cross themselves in the original phasehe attractor. For purposes of computing the correlation di-
space, wherlg is large enough, thg(n) orbits cannot cross mension, thendz>d, will do. This may still be insufficient
themselves in the reconstructed phase space. The theoremunfold the attractor for purposes of revealing the dynam-
states that whemz>2d,, whered, is the box counting ics. As a simple example, consider a limit cycle in a flow.
dimension of the orbit in the original space, this gives aThis attractor has a geometric fractal dimension of one. In
sufficientcondition for a correct embeddirig@]. In the unre-  some two-dimensional projections this limit cycle could be
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topologically equivalent to a circle, but in others, it could and similarly toy™\(i). If the distance betweey™(i) and
appear as Arabic numeral “8.” At the intersection point the y(i) in d+1 dimensions is very large, then we havéatse
implied vector field in the reconstructed state space is nohearest neighborThis is the hallmark of an illegal projection
well defined and the embedding is inadequate for dynamicaaused by improper embedding. Efficient computer algo-
reconstruction though it is sufficient for determining the geo-rithms[6,7] can find near neighbors of a point in &hpoint
metric fractal dimensiorii.e., ong. This is not an isolated dJata set inO(InN) time, rendering the overall algorithm
pathology; in general, an embedding dimension adequate fay(N InN) rather thanO(N?). The latter would make the
evaluating the correlation dimension may not be sufficient|gorithm computationally infeasible for substantial datasets.
when dealing with the actual underlying dynamics which is  One part of the our earlier algorithfi] compared the
at the source of the observations. ratio of the distance incurred by considering thieH(1)th
The now popular false nearest neighbor methidb]  component to the nearest neighbor distance dfimensions.
yields the necessary global dimensidp for unfolding an A sufficiently high value of this ratio was deemed to indicate
attractor using only observed data. It assures that points hayg«false neighbor,” namely, points close in dimensidomere

state-space neighbors that are a result of the dynamics rathgyr apart in dimensiod+ 1. The specific test for false neigh-
than being projected from near one another as an artifact @§ors was to evaluate if

using too low an embedding dimension. Choosing an inap-

propriately lowdg will cause parts of the attractor, which are lYas1(D)—yin ()]

widely separated in the original, but unknown, state space to Ry(1) >pr, 2
overlap spuriously in the reconstructed space. To detect this, d

the false nearest neighbors test constructs vectors from the.

data in dimensiord=1, thend=2, and so forth, asking at with

each stage what fraction of nearest neighbors in the data set, d

as seen in dimensiod, fail to remain close in dimensiod Rd(i)zzi 2 [s(i+(k—1)T)—s™i+ (k—1)T)]2 (3
+1. When all nearest neighbors are true, that is, do not d &

significantly move apart when we go to the next dimension,
we have found the necessary minimum embedding dimerthe distance in dimensiah If this ratio is greater than some
siondg=d. thresholdp,, we deem these pointg(i) and y™(i) false
This paper demonstrates a number of improvements to theearest neighbors. Typically we take<1p,<20.
earlier method that address some of the issues we have en- This criterion alone had a flaw: the typical distance even
countered in dealing with various data sets from fluid dy-to nearest neighbors can be substarigakn a large fraction
namics, climatic variations, nonlinear circuits, laser dynam-of the global attractor sizein higher-dimensional spaces,
ics, and neuronal systems. The outcome of the suggestiom®ntrary to our low-dimensional intuition. This results in a
we make here is a more reliable algorithm that eliminateslownward bias of this ratio statistic with increasing embed-
various systematic effects with embedding dimension so ading dimension. This occurs since the typical denominator,
to give quite reliable answers. Specifically, we provide cor-namely, the distance in dimensiah got so large that an
rections (1) to account for the neighborhood properties of authentically false neighbor would not result in a sufficiently
oversampled continuous dat&) to account for autocorrela- high ratio to trip the false neighbor alarm. An infinite-
tion when a small time delay is used, af®l and to account dimensional white noise data set would indicate a small pro-
for sparsely populated regions of the attractor. portion of false neighbors at a sufficiently high embedding
A principal goal is to provide aharp indication of the  dimension because of this effect. We still needed this test to
minimum embedding dimension by eliminating systematicdeal with significantly autocorrelated data, but we present
effects with dimension, sampling rate, and correlation thatere an alternate approach that appears to work better.
might otherwise make the determination dyf less certain. In our earlier papef5] we dealt with the small noisy data
The improved statistic also provides a fast and powerful tesset with a second ratio test comparing the augmented dis-
against colored noise with linear correlation. If such a signatance in going from dimensiod—d+ 1 to the overall size
has strong spectral peaks, so we might call it “noisy period-of the attractor. If we are using time-delay embedding, then
icity,” have smooth and often “deterministic-appearing” eachy(n) embedded ind+1 dimensions consists of the
structure in phase space. It is important to be able to reliablgame vector as embedded dndimensions with one new
distinguish such signals from low-dimensional deterministic,element in the last position. In the case of a false nearest
chaotic dynamics. neighbor, the additional large distance oh+1) dimensions
will occur solely in the last component, because the first
components are constructed to be small by virtue of being
nearest neighbors. Imagine that the data are, in fact, white
The implementation of our ideas boils down to choosingl’loise of standard deviatioa. The absolute difference be-
criteria for determining an “illegal projection.” For each ob- tween the ¢+ 1)th components of the vectorbyy. (i)
served point on the attractg(i) in d dimensions we find the —yy, 1(i)| will in probability be as large ag2o- and many
nearest neighbgrcalledy™(i). We then examine the same nearest neighbors will register as false, as desirable for this
vectors y™(i) and y(i) in dimensiond+1. This simply class of signals. This suggested another test for a false neigh-
means adding thedi 1)!" components(i +dgT) to y(i),  bor:y™(i) is a false neighbor if

II. NEIGHBORS: TRUE AND FALSE
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whereR, is a scalar measuring the overall size of the attrac-
tor, andp, a fixed parameter chosen externally, with typical
values between 1 and 2. We call this the “absolute” test,
because it compares the size of the nearest neighbor devia-
tion to an absolute quantity independent of the nearest neigh-
bor distance. A reasonable choice R is

1 N o 12
RA=(N 2 [s(i)—sf) (5)

FIG. 1. An illustration of false neighbors and false strands.

with s the average value of the observed scalar data. With ) ) )
this test there is less intrinsic bias in its variation with If the sampling rate is fast, and successive scalar observ-
As our first improvement for the current work, we con- ables differ only slightly, then temporally successive points
sider systematic effects with dimension; namely that dis!" the reconstructed state space will also be close in spatial
tances increase with the dimension attempted. In(Exthe  distance. With such an oversampled trajectory, however, the
numerator will scale as this but the denominator, being de-néarest neighbor” to a reference poip(i) will very often
rived from scalar statistics, will not. Our criterion of a false b the next pointy(i+1) or, perhaps, the previous point
neighbor uses the numerator from E8) over the denomi- Y(i—1). The distance between thé < 1)th coordinates of

nator of Eq.(4), these two points, the quantity going into the false neigh_bors
test, will thenneverbe large, simply because of the high
ooy ; oversampling rate. Under these circumstances, until the num-
lyat1() = Yar1(D)] . .
R >p,. (6)  ber of data becomes enormous, one will never register a false
A

nearest neighbor, regardless of whether there is an actual
) . _lllegal projection. The average distance between points when
In 'Fhe actqal algorithm presen;ed be!ow, we employ this criyye haveN data is~1/NY in dimensiond. This eventually
terion to _Judge groups of nelghl_aorlng points, not merelypecomes less than the distance between spatially successive
single _nelghbors. Fu_rthermore, with the _clecorrglauon_transpoints in oversampled data, but the number of data may need
formation also mentioned below, a relative ratio t€tis {5 pe very large to accomplish this.
superfluous. To illustrate this matter consider Fig. 1. Clearly the point
designatedy"(i), and noty(i+1), is the nearest neighbor

[ll. THE ALGORITHM AND STATISTIC we had in mind in developing the false nearest neighbor
method. So we must tell the algorithm some way to distin-
guish the correct, but potentially false, neighbor from the

Often one is presented withversampled continuous data nearest point along the same section of orbit lying close by
The underlying physics may be governed by ordinary differ-dint of having oversampled the data. The fix for this problem
ential equations, leading to smoothly observables smoothlis now well known. When searching for nearest neighbors,
varying in time. One must sample this data at a finite timeone ignores all points within a certain tempodalcorrelation
resolution, and one ought to sample at a rate fast enough faterval Waroundy(i). We want to exclude the entire “tra-
capture all the important dynamical behavior without alias-jectory segment” temporally associated wiii), and not
ing. Within reason, from this point of view, the more over- necessarily jusy(i+1). If we did only that, thery(i +2)
sampling, the better it is, as it results in a smoother reconeould end up being a nearest neighbor for a highly over-
structed flow. sampled trajectory.

Oversampling introduces complications into the false This “decorrelation correction” was applied by Theiler
nearest neighbor algorithm. The data analyst might suspe¢8-10] in the context of computing the correlation dimen-
oversampling when statistics of the time series demonstrateion[11] from observed data. Osborne and Provenga®
significant autocorrelation. For instance, if the first localfound that high-dimensionatolored noise could result in
minimum (if extany of the average mutual information is a apparently finite values of the correlation dimension, thereby
large integer times the sampling time, then the data is casting doubt on some findings of low dimensionality in ex-
most likely oversampled. One can check this by removingperimental data by using this method. Theiler demonstrated
every other data point, and the average mutual informatiotthat this finite-dimensional correlation dimension came about
should show a minimum half as large as in the original databy counting neighbors on the same trajectory segment. The

This section discusses methods that discount systematiecorrelation correction eliminated this effect.
geometric phenomena that could have a strong effect on the The results ought not depend very much on the trajectory
measured false neighbor statistic yet are irrelevant to theegment interval chosen, as long as it is long enough to com-
minimum embedding dimension question. pletely exclude the local trajectory segment, and not so long

A. Removing spatial neighbors nearby in time
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that it does not exclude too many valid parts of the datasebor possesses time indexJ(i); namely, J(i)
This sounds like smoke and mirrors, but we have found that- argminy||y,(3(i))—yq(i)||, subject to|d(i)—i|>W. Next
a good rule of thumb is to choose an interval about two Okye examine temporal predecessors of the reference pair
three times the first minimum of the average mutual infor-[j J(i)], [k,J(k)] starting atk=i — 1 and counting down to
mation. We have found good results when we choose thg=i—W. We identify thatk* closest ta for which[i,J(i)]
decorrelation interval to be a time scale on which the averagg a direct temporal iterate of some point pgik*,J(k*)],
mutual information has reached its asymptotic zero value. Ithat isJ(i) —i=J(k*)—k*. The pair[i,J(i)] is declared to
the results change substantially with varying decorrelatiorbe on the samstrand pairas[k*,J(k*)], and we append it
interval, that is a warning that the data may be nonstationaryto the appropriate list. Each point p&irJ(i)] is associated
with at most one previously extant strand pair, the one con-
B. False strands taining [k*,J(k*)]. If [i,J(i)] is not a direct iterate of any

. . . . . [k,J(K)] for ke[i—W,i—1] then we create a new strand
The standard decorrelation window is not entirely a sat|s—[ (k)] cli 1] W e

. ) . N air and makei,J(i)] its first member. The pa[r1,J(1)] is
factory correction, however. Another important issue is |IIus—p @i, ()] palrlJ(1)]

L . . . initialized as the first point in the first strand.
trated in Fig. 1, showing a typical situation for legal embed-  pfer examining all data, we will have accumulated a col-

dings. If, by contrast, the two orbit segments were illegally|ection of strand pairs, each of whose elements are pairs of
projected then generically they tend to make a close pass gbints that have identical temporal offsets from each other
some strong angle instead of remaining close with nearlynd pointwise are nontrivial nearest neighbors. If two trajec-
parallel flow vectors. The poit™(i) is a true nearest neigh- tory segments travel parallel to one another and stay as near-
bor toy(i), andy™(i+1) is a true nearest neighbor §i  est neighbors for a significant amount of time, as in Fig. 1,
+1). There is no new information in this fadt.is a simple  all these points will end up on the same single strand pair,
consequence of the oversampled trajectory and autocorrend thus they get counted only once. We deridgeas the
lated data. As the sampling rate of the data is increaseardinality of the completed set of strand pairs.
trajectory segments in a “true neighborhood” will acquire  Designating strand pairs in this way automatically ac-
many more points that register as true neighbors, as these aggunts for the situation when more than one trajectory seg-
just iterates of previously found pairs of true neighbors. If wement stays close to the reference segment, and the identity of
increase the sampling rate in a false neighborhood, the nunthe nearestone jumps back and forth between these trajec-
ber of false neighbors would increase by a small amount afory segments. If there were two segments for example, then
most, because false trajectory segments cross at obliqugme point pairs will be assigned to one strand pair and some
angles and cannot remain parallel to the reference trajectomy the other, but there will be just two separate strand pairs
for very long. constructed for this region. This becomes important if there
The overall systematic effect is to diminish the final sta-are a number of parallel trajectories in some region of phase
tistic: theproportion of false neighborsas the sampling rate space but with data contaminated with a slight amount of
is increased. By choosing a high enough sampling rate thgoise. Our definition of strand pairs deals with this situation
proportion of false neighbors could move down to a smallwell, in contrast to the slightly more intuitive notion of re-
number, even with an unacceptably low embedding dimenquiring strand pairs to encompass only consecutive points.
sion. This has nothing to do with the geometric issue we arghat alternative works well on very clean data, but would
addressing in determining a good value & generate many new separate strands with a small amount of
There is yet another problem: as the dimension increasegoise, which would nonetheless not represent “new” infor-
close true trajectory segments may stay together for longeation.
and longer lengths of time due to the geometry of high- Once we have defined strand pairs, we define true and
dimensional spaces. This imparts another downward terfalse nearest strands. There are many different reasonable
dency to the false nearest neighbors statistic, which becomesoices, such a$l) a strand pair is false if any of its points
stronger as dimension increases. are false 0K2) a strand pair is false if the closest point pair is
Our approach to addressing this matter is to examine anghlse. We found best results if we choose to designate a
countnearest strandsather than focus on nearest neighborsstrand pair as false when the averaged “extra distance” is too
alone. Given pairs of real nearest neighbor points we CO||€C[brge_ Suppose we have two strands of a strand$alre set
sets of these pairs which are direct temporal iterates of ongf reference point&®s and the set of neighborss, in total
another. We collect a whole strand of trajectory nearby to then=S point pairs. We evaluate the average distance of the
trajectory we are presently examining. These sets comprisg+ 1th component of the vector(k) (ke Rs being a time
nearest strand pairsThe central statistic is then to find the jndex of the points on the reference strarfcom the d
number of false nearest strands compared to the total numbers th component of its nearest neighby@d(k)) on the Ns
of strands. Thus we eliminate the previously mentioned sysm, particular, we compute
tematic error due to the changing sampling rate. Accordingly
we name the proposed method “false nearest strands.” 1
How do we identify strand pairs? A strand pair is a list of AS) = k;{ [Ya+1(I(K) =Yg+ 1(K)|. "
index pairs[i,J(i)] which in turn, designate the indices of s
nearest neighbors in phase space. For gdchwe find the  Each element of the summation is a distance exactly the
nearest nontrivial neighbg™(i). This nearest spatial neigh- numerator in Eq.(6), with arithmetic averageA(a). If
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FIG. 2. False neighbors as a function of decimation interval, FIG. 3. False strands as a function of decimation interval, in-
without sampling corrections. The data comes from the Lorenzluding both sampling corrections. The data come from the Lorenz
model of the atmosphere. The initial data are 16 384 points sampleghodel of the atmosphere. Initial data are 16 384 points sampled
with 7,=0.5. The data are then halved, then quartered, then cut bwith 7,=0.5. The data are then halved, then quartered, then cut by
a factor of 8. This reduces the oversampling by hand. a factor of 8. This reduces the oversampling by hand.

A(S)/Rp>p then this strand pair is declared false. The finalof 7, successively halved to maintain the same geometry,
statistic is the proportion of false strand pairs to the totalthereby effectively lowering the sampling ratcreasing
number of strand pairs. 7s). There is a convergence of the standard false neighbors

Our goal is that each different strand pair should be aperiterion to zero starting ad=4.
proximately independent information. One can then make an We often use as a rule of thumb a false nearest neighbor
admittedly very rough estimation of the uncertainty by fur-reading of less than 1% to indicate the necessary embedding
ther assuming Poisson statistics. If the proportion of falselimension given clean data, but it would be rather difficult to
strand pairs iSN¢/Ng, one could guess a standard deviationmake the distinction among dimensions 4 or 5 or 6 here. If
of +N¢/Ng, or employ a binomial model. With substantial one increases the sampling rate the false nearest neighbor
oversampling, using false points would greatly overestimatestatistic decreases. The same attractor that may have ap-
the precision. peared to require six dimensions would perhaps seem em-

With these oversampling corrections, one can use largbeddable in four or five dimensions simply by virtue of being
amounts of highly oversampled data with greater confidencemore oversampled, which cannot have any substantial effect
Figure 2 shows the proportion of false neighbors withouton the topology. By contrast, Fig. 3 shows the results when
oversampling corrections on the 16 384 points ofttemor-  the two oversampling corrections are included. fEer6
dinate of a three-variable system of equations due to Lorenthere are always a substantial fraction of false strands, well
[13], above 4%, with a clean drop teroat d=6, regardless of
the sampling rate. This time, the proportion of false strands
for d<6 increaseswith increasing sampling rate: the attrac-
tor is more fully defined in all places, thereby providing
more opportunities to precisely observe the close crossings

dy(t) from illegal projections. We hypothesize that fd=4 ord
T=xy—bxz—y+G, =5 there are a modest number of illegal projections but
when looking only pointwise they may be overwhelmed by
dz(t) the increasing numbgr of true neighbors in a highly over-
—— =bxy+xz—2 (8)  sampled systems. With the strand correction the drop-off,
dt and therefore the confidence we have in choogipg 6,

. becomes sharper with more data. With the oversampling cor-
with  parametersa=0.25,b=4.0,F=8.0, and G=1.0,  rections, more data mean better results: a higher fraction of
sampled at intervals;=0.05. The attractor has a dimension f5|se strands fodg too small, and a lower fraction of incor-
of about_ 25 which means it is rather more complicated thagect false neighbors for corredt .
the traditional Lorenz attractor.

As an initial time delay we chose a reasonable
T=16—the average mutual information criterion indicates
T=17. The figure demonstrates what happens to the false Autocorrelation among observatiosgn) has another ef-
neighbors statistic as this dataset is decimated by successifext on the observed minimum embedding dimension statis-
factors of 2(scalar data exciseavith the time delay in units tic. When the embedding time delay is short, then autocorre-

dx(t)

— _—y2_52_ _
T y —z-—a(x—F),

C. Removing linear correlation
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lated behavior will make the proportion of false neighbors
registered appear small regardless of the actual dynamics. ,
too short time delay folds the attractor onto a thin tube along ¢5-.-:

the y;=y,=---=y4 line. Consider the “absolute” false
neighbors test 0.4
Vet 1)~ Ya+1(1)] %0_3\_
RA >Pa- (9) é

. o : go2y
If Tis short, theryy, ((i) is usually close tg/y(i) by auto- a :
correlation, likewise fory™(i) also. By constructionyj'(i) 0.4
will be close toyy(i), and therefore/g’ ,(i) will automati-
cally end up being close tg,,1(i) and thus will not register 0=

as a false neighbor, by the absolute criterion. If we ask thai
false neighbors evolve to macroscopic distar(tiest is, with
p on order of unity, we must permit this to happen. Auto-
correlated data and a short time delay will suppress this. The dimension
net effect is to again suppress observed false neighbors with ) ) )
smallerT. Thus we might erroneously infer a too-small em- FIG. 4. Proportion of false nearest strands as a function of time
bedding dimension as a result of choosing a small time de|a>9!e!ay(multiples of ) and trial embeddi.ng dimension. 25 000 data
With large enough autocorrelation, one will not regisiey points were taken from the atmospheric model of Lorenz. The pa-
false neighborsdespite the resenée of an inappropriate em_rameters for the numerical simulation were as noted earlier in the
neig P 1€ prese pprop text; 7,=0.05 which leads to a suggestdd=17 from consider-
bedding. It reduces confidence in the results when the appal=

- . - . . -,.ations of average mutual information. The opaque surface includes
ent minimum embedding dimension changes drastically W|tl}1 9 pag

f[he time dglay—much more t_han permitted by even a IOOS{?rincipal component transformation. The clear mesh adds the global

interpretation of t_he embedding theorem. The standard afi,ear decorrelation.

proach is to fix a time-delay presumed to be good by another

means, such as the average mutual information criterion . . -

[14]. However, we have found some examples where th guadratlc map: _W|tr_s(n+1)=f(s(n)), b minimum em-

estimate of time delay may be excessively large, as when t:t%eddmg d_|mens_|on is one, and we see a parabola if we plot

reciprocal of the local Lyapunov exponent is large relative toine tyvo-dlmen5|onal r_Jhase spagen)=[s(nfr1),s(n)].).

the autocorrelation or mutual information time. That is, in The Imear transfor_matlon to pr|_nC|paI coordina@sTy in

regions of phase space where the system is especially ufvo Q|men3|ons might rotate this parabola o] that the map-

stable, average mutual information may yield a misleadinghyPInd iS No longer one-to-one from the first coordinate 66

large time delay for that section of phase space. the ;econd, meamng_that_ the minimum em_beddmg dlmgn—
To overcome this problem, we apply a global linear transSio" iS greater than_ lin thls space. We require that the mini-

formation to the state space which removes all linear crosUm émbedding dimension of the transformed space be the

correlation among the components and renders each autd™Me as the original time-delay embedded space. In the Ap-

correlation unity. Withz denoting the transformed spage pendix we derive the rotation that preserves this property: a

— 2, this means that the cross correlation among componen{g‘ear transfprmatlon imi+1 dimensions f.ror.‘ry—>z that not
only normalizes each component and eliminates linear cross

1 N correlation, but also guarantees that the firsbordinates of
C(z,z)= N E [z(m)z;(m)]= 6, (10 z are functions only of the firad coordinates of. In z space
m=1 we find nearest neighbors thdimensions, and examine the
difference between thal(+ 1)th coordinates of neighbors—
which are now guaranteed to be linearly decorrelated from
all the otherd coordinates, and have unit standard deviation,

with z4(m), then we will not suffer the problem mentioned in thus implyingR,=1. We may now hope to observe false

above. One well-known and standard transformation satisfyr-]e'ghbors or strands even when the embedding time delay is

ing this requirement is the rotation and stretching to normaI-Short'

ized principal components; for instance one transformg to

+1 dimensional principal coordinates finds neighbors in IV. NUMERICAL RESULTS AND CONTRAST
the d-dimensional subspace, and examinesdhel coordi- WITH NOISE PROCESSES

nate for true and false strands.

This linear correlation between components is success-
fully removed but it presents a problem for our use, however: Our first example uses 25000 data points generated from
the necessary global embedding dimension found in this newhe small atmospheric model of Lorefz3]. Figures 4 and 5
space mayiot be the same as that of the original time-delayshow the global false neighbors statistic wittlear mesh
embedded space. For example consider a one-dimensiorahd without(solid surface the decorrelation transformation.

time delay

eighbor decorrelatiofstrand corrections but not the normalized

i,j=1,2,...d, and we haveN total d-dimensional data
points. The mean is subtracted from f{en) vectors prior to
the transformation. I£4, 1(m) has no linear cross correlation

A. Some numerical simulations
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structions of phase space and differ in the choice of time
delay. Different choices of time delay are different nonlinear
choices of coordinates for thdc-dimensional space, and
there is no reason why thgdobal dimension required should
not change as we vary the time delay used. As noted the
local dimension must be the same as that is the dimension of
the active dynamics. Fractal dimensions and Lyapunov expo-
nents will be unaltered under these coordinate chahtyds

The usual point of view has been to choose the time d€lay
based on mutual information, and then to chodsdased on
false neighbors. It is entirely logical to choose bathnddg
based on false strands, since each choice constitutes a differ-
ent choice of coordinate systems for the reconstruction of the
dynamics. Presuming each choice has a sufficiently low pro-
portion of false strands, deterministic evolution is assured
dimension and model making can proce¢til].

proportion FNN

time delay

FIG. 5. This is the same as Fig. 4 viewed from a different angle. B. Noise: White and colored

With the decorrelation transformation, the improved algo-
rithm provides a good test distinguishing real low-
dimensional dynamics from correlated, colored noise signals.
This kind of noise(very high-dimensional dynamicsan
) . 9 o X @bnfuse standard false neighborlike tests. For example, if the
the t_>est empeddlng dlmenS|_on @_:6' T_h's IS certa|_nly spectrum is very red, falling rapidly as frequency increases,
consistent with a box counting dimensia~2.5. With i jies strong autocorrelation, and thus with the previous

smaller time delays, starting below 11, the false neighboarguments, there could be few false neighbors or lack of

statistic calculated on untransformed time-delay embeddg eterminism observed even though the dynamics are for-

data decreases rapidly for all dimensions due to the prévig, oy infinite dimensional—even with a decorrelation cor-
ously mentioned systematic effect. The transformed datgyction in choosing neighbors.

however, show a very clear drop-off dt=4 of the false Removing the linear correlations between components is
neighbors statistic from almost 40% to less than 1%. Thu?)rewhitening of the data and serves to give somewhat equal

the method clearly demonstrates that 7 andd=4 is @ = gmphasis to all frequency components of the data. As our
good embedding. Ihe untransformed data also show a dropnsiormation of the Appendix is a linear transform of the
off to near zero atl=4 for values ofT between 7 and 11, but o jginal data, it does no harm from the theoretical point of

the prudence suggests this may be a result of the stronge,y of the embedding theorem. All local properties will be

downward. bias in embedd|.ng dimension for srr_lall tlme de'preserved, and when there really are many degrees of free-
lays. In this example, we find that a smaller dimensitn  qom in the signal, this whitening transformation will reveal
=4 gives a good set of embedding coordinay¢s) at T them. Of course, whitening does tend to amplify noise,
=7. The time delay off =17 suggested by average mutual yhich may have the practical consequence of degrading sta-
information requireslg=6. It is important to note that, even tistical quantities computed on low-dimensional attractors re-
theoretically, thathe minimum necessary global embeddingconstructed from somewhat noisy observations. We comment
dimension need not be invariant with changing time delaynat we are not performing the kind of bleaching that is dis-
because such a change constitutes a nonlinear change of gazommended by Reff19], where successive scalar residuals
ordinates. What should be invariant is the local dimensionnat occur after a linear fit is performed to the original data
required to capture the dynamics and the correct number Qfre themselves reembedded into a new state space. That pro-
Lyapunov exponents of the dynamids8]. The decorrelation  cequre amplifies noise unacceptably, and does not necessar-
transformation will allow one to safely employ smaller time ily preserve topological invariants.

delays than those necessary to “fill out the attracténe- Consider vectors drawn from the samples of independent
move componentwise correlatipras chosen by methods \hite noise. The ¢+ 1)th component will have no relation

such as average mutual information and still be confidenfy tne previousd components, and thus choosing nearest
that a signal of few false neighborsnst the result of auto- neighbors in that space provides no help in predicting the

correlation that masks _detection of topological seh‘—crossings(.dJr 1)th component. Thus the criterion for false neighbors
The message here is that there are many perfectly accept-

able embedding spaces with->d, and dg less than the |z 1= 24+ 1> pa (11
sufficient condition indicated by the embedding theorem:

dg>2d,. The different embeddings all meet the criterion of will be met very frequently giving a high proportion of false
zero (or very smal) proportion of false neighbors or false neighbors: withp,=1 around 50% being typically seen as
strands, if oversampling is an issue. The different embedzy’,; and zy,; would be essentially uncorrelated scalars
dings in the viewpoint we take here are all time-delay recondrawn randomly from the distribution. One would observe a

The average mutual information criterion suggésts17 for
this data set. This falls into the range of our rule of thumb of
being oversampled data, though not by much. Nearl7,

the augmented global false neighbors criterion suggests th
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bors and may amplify noise, including quantization error.
Noise will result in a noise floor reasonably flat with embed-
ding dimension. We point out that the analysis of Rég]
should carry over for making a correction for uncorrelated
noise by loosening the criteridi®). If one has knowledge of
the noise amplitude bound on top of a low-dimensional
signal one may include in the criterion a loosening to elimi-
nate “noise-induced” false neighbors.

proportion FNN

Ya+1() =Ygt ()]
Ra

>pat26. (12

In Ref. [22] the authors also consider the deviation due to
high local expansion, i.e., a large Jacobian. We comment that
a small region of very high expansion may be indistinguish-
able from a false neighbor. Unfortunately given data alone it
may be difficult to estimate the noise level and reliably iden-

FIG. 6. False nearest strands as a function of time delay and triz;qumg regions of local expansion is even more d'ff'Pun' One
embedding dimension. The opaque surface shows the original low- ould first need a'good 'global and local embedding Of the
dimensional signal from the model of Lorenz. The clear meshdata that are req“'req with the reSUIts_ of p_resent algorithm.
shows surrogate data: noise with same power spectrum as the trJd1uS We do not consider such corrections in the subsequent
signal. The distinction is quite clear, and supports our foreknowl-"€Sults.
edge that the original signal came from a low-dimensional dynami-

cal system. C. Last component shuffling, an alternative to surrogate data

time delay

dimension

nearly constant and high level of false neighbors on the ab- Owing to the nature of the decorrelation transformation,
solute test—independent of embedding dimension and tim&e can employ a slightly different “null test” that is faster
delay. This is immediately distinguishable from those seerand easier than generating surrogate data sets with the same
with low-dimensional dynamics. Fourier power spectrum and then recomputing the false
The key observation is that this situation persist&n neighbor statistic. With linearly correlated noise, the (
with correlated noiseThe reason is that our transformation + 1)th coordinate is rendered a random variable independent
removes all linear correlation among components, but theref the previous parts of the vector. Thus we can compute the
is nothing else to the noise signal besides linear correlatiorievel of false neighbors that one would expect from noise
Therefore, when examining the evolution of neighbors in thealone by assuming that thel ¢ 1)th coordinate has nothing
transformed phase space, the noise appears effectively whit®. do with the previous ones. This is accomplished by gen-
The present algorithm provides a very powerful and easy-toerating new vectorsz’ whose last component has been
interpret statistic to distinguish colored noise from authenticshuffled randomly among all the vectors in the database and
low-dimensional dynamics. Figure 6 shows the false neighby computing the proportion of false neighbors on this set.
bors statistic for the low-dimensional dataset previously emThe choice of nearest neighbors depends only on thedirst
ployed compared with a surrogate noise dataset, construct@@mponents, which remain unchanged, thus one may use ex-
with a Fourier transform method, which has the same poweactly the same indices of nearest neighbors as for the actual
spectrum, and therefore the same autocorrelation structudata and no additional nearest neighbor seéndfich com-
[20,21]. (Furthermore, the two signals compared had theprises the bulk of the computation tipnis needed. The ad-
same approximate one-dimensional probability distributionditional cost for the shuffled statistic is hence very low. Fig-
as a result of the “histogram transformation” on scalar ob-ure 7 compares the results from a Fourier transform based
servables as employed in R¢20].) surrogate dataset to those found by shuffling the last compo-
The contrast is striking. Compared to the authentic signalpent using the original dataset, after the decorrelation trans-
the noise results show a much higher level of false neighborrmation. The shuffling technique predicts the approximate
as well none of the characteristic changes seen on a dynanievel of false neighbors that one would see with surrogate
cal signal with varying time delay and embedding dimen-data of colored noise. Though this may seem a very minor
sion. The presence or absence of this variation with embedechnical detall, it is true that the shuffling and equivalent
ding parameters provides another immediately apparent teBourier spectrum tests are not completely equivalent: the
as to whether an unknown signal comes from low-shuffling method will preserve the one-dimensional probabil-
dimensional dynamics or an essentially stochastic source. ity distribution of the original signal whereas surrogate data
We suggest to users familiar with the original algorithm methods typically generate Gaussian distributions in every
[5] that when employing all the new corrections in this work, projection.
the standard for an “acceptable” percentage of false strands In some ways, the shuffling test is even more direct to the
to deem a dataset sufficiently low dimensional be not agoint than surrogate data. Assuming all linear correlation has
strict. The corrections preclude overcounting of close neighbeen removed it asks “is there any predictable low-
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FIG. 7. Proportion of false nearest strands coming ftarsur- FIG. 8. A sample from a tricky synthetic time series which is

rogate dataclear surfacg noise with the same power spectrum, nojsy periodicity and only resembles chaos. The system was a linear
and(2) data coming from shuffling the last component of the datafijter of white noise, whose transfer function had poles very close to
vector (opaque surfage The data were from the small Lorenz the ynit circle in thez plane. More physically this is like noise

model. driving a number of extremely resonant linear oscillators.

dimensional structure in the original data” by generating )
what one would see if the answer were “no, one might havdUm surrogate data meth¢do0]. In that method there is an
chosen that last coordinate at random.” At minimum, it is €xtra Kolmogorov-Smirmnov test performed on prospective
certainly far less computationally intensive than surrogatésurrogate data before they are accepted into the ensemble of
data methods, requiring only negligibly larger effort thanvalid surrogates. This check had to be disabled to get any
performing the false strands test to begin with. results at all, otherwise all surrogates were rejected, correctly
The shuffling method provides a sharper test for low-indicating the inapplicability of that test to this dataset.
dimensional dynamics. One could easily perform the obvious Figure 10 shows the proportion of false neighbors for the
Monte Carlo simulation involving multiple shufflings and noisy periodic data as well as its last component shuffled
derive the appropriate statistical hypothesis test comparingounterpart. Here the level of false neighbors is very high in
the false neighbors statistic of the original data to the distrithe original data and remains near the 50% seen with the
bution from an ensemble of shuffled sets. This appears to whuffled set. It shows no interesting variation with embed-
to be overkill in many practical situations: given reasonablyding dimension or time delay, which we have seen is indica-
low-dimensional signals, the false neighbor statistic is powdive of low-dimensional chaos. The present shuffling algo-
erful enough and gives results easily distinguishable by eysthm successfully and unequivocally distinguishes this
from those arising from colored noise. signal from authentic low-dimensional chaotic data. All the
This technique also gives correct results where Fourieeomputation necessary for Fig. 10 took less than 30 min on a
surrogate data methods as in R¢20,21] may fail. We syn-  standard SPARC 10 computer.
thesized an intentionally tricky highly oversampled data set
which came from a few highly resonant oscillators driven by 5
white noise. In signal processing language, there were pole
in the z-plane transfer function very close to the unit circle,
and thus some sharp peaks in the power spectrum. The dar 14
were, in fact, generated as a linear filter of Gaussian white o
noise. Some of the characteristic frequencies were integras
multiples of each other, and some were not. The resulting; o
time series was very smooth and resembled, even to the eyw
perienced eye, low-dimensional chaotic data despite truly
arising from a purely linear stochastic process. Figure 8 -1
shows a time series segment of this dataset, and Figure
shows a three-dimensional state-space embedding. By visu: LY
inspection, this data looks low dimensional with interesting e : 1
phase-space structure, in contrast to the “tangled-spaghetti’ x10°
phase-space appearance of broadband colored noise. Nearly
all other tests we applied to this data set gave results indica- FIG. 9. Time-delay embedding il=3 of the “noisy period-
tive of low-dimensional chaos, including the Fourier spec-icity” data set.

0.5+

15 2 s(n)

s(n+50)
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FIG. 10. Opaque surface: Proportion of false nearest strands for

the “noisy periodicity” dataset. Clear surface: The same with FIG. 12. Opaque surface: Proportion of false neighbors for the
shuffled last component on each vector. chaotic circuit described in the text. Clear surface: Same data with
the last component of the vectors shuffled at random.
Figure 11 shows the results applied to data which are a o
static scalar nonlinear transformatioy x%) of the previous A. Electronic circuit

noisy periodicity dataset. In this case, the proportion of false The first system is a clean nonlinear circuit described in
neighbors is smaller than that seen with the shuffled data, buyfreater detail in Ref§23,24. It consists of a nonlinear am-
the absolute level is not small and does not show the propailifier [V— af (V)] whose linear feedback loop has RIC;
structure with time delay and embedding dimension to indi{fow pass filter and a.C, resonance. This is part of an
cate chaos. The algorithm diagnoses these data as a nonlineperimental setup intended for studying the synchronization
transformation of noisy periodicity. of physical chaotic systems. Figure 12 shows the statistic on
a dataset of voltages measured across one of the capacitors.
This circuit is part of an experimental setup to investigate
We now illustrate the above developments with example C?ﬁgﬂ;jﬁgfhﬁ%f?{;ﬁgiig]{eghfs Zyztsgg IZn?Lee%rgnlgvéi_
from numerical simulations and from Ia_lboratqry datg ta_ke ension ov’er a range of time delays. Figure 13 shows a
from three sources1) Data from qchaotlc non!lnear CIFCUIL,  Gitferent measurement of the attractor of the same circuit at
2 dz_;\ta from the chaoth fluctu_atlons O_f a Nd.Y,_O(QZttrlum the same experimental parameters, but measuring the voltage
aluminum garmetlaser with an Intracavity doqblmgﬂcnys_tal; across the other capacitor. Again, the test shows the data are
and"(3) data from_the pressure fluctuations in a “fluidized emphatically more predictable than colored noise, indicating
bed” of small particles. a good embedding now dt=4 across a wide plateau of time

V. EXPERIMENTAL EXAMPLES

Zz044. -
£ z0.
c =z
S$0.3- i w
T =
o 90.
Q =
o S
5024 g
[
50.

dimension time delay

time delay dimension

FIG. 11. Opaque surface: The false strands for the noisy period-

icity dataset with a time-independent nonlinear transformation. FIG. 13. Same computation for the nonlinear circuit as in Fig.
Clear surface: Same with shuffled last component on each vectorl2, but with a different measured output voltage.
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FIG. 14. Sample of time series from controllable Nd:YAG laser

. A FIG. 15. Opaque surface: Proportion of false neighbors for in-
dataset. There is a strong natural periodicity.

tensity fluctuations of the laser, for controllable dataset. The mini-
mum occurs atlg=3, with time delayT=4 in units of the sam-
pling interval, which is 0.p. s. Clear surface: statistic with last
vector component shuffled.

delays. The behavior in théz-T plane clearly indicates a
clean low-dimensional dynamical systeigimilar to results
seen with simulations of ODE's as expected, given our

knowledge of the physical system. ) . . ) .
embedding dimension, in contrast to most other algorithms

that usually demonstrate only a subtle “break” in the change
of some quantity that may be very ambiguous when used on
We now turn to the experimental data of beam intensitiegealistically nontrivial noisy data.
of a Nd:YAG laser with nonlinear frequency doubling crystal  We attempted to separate noise from chaos with a simple
in the cavity[25]. The first dataset examined came from alow-pass digital linear filter, and computed the false strand
regime where a dynamical control scheme was able tatatistic on the filtered data. Figure 16 shows the power spec-
operate—however, the control was not activated here, agal density of the original and the filtered signal. Despite the
these data demonstrate the autonomous chaotic dynamics isppearance of this figure, the filtering was not particularly
trinsic to the laser. There were three electromagnetic modegdical in reconstructed state space, eliminating only 1.4% of
active in the laser cavity, all polarized in the same directionthe power in the original signal. At frequencies below 150
The dataset was 100000 points long, digitized with 8 bitkHz there was hardly any alteration of phase or amplitude.
precision recorded at a sampling rate of 2 MHz. Figure 14rigure 17 shows the false strands statistic. Now, there is a
shows a segment of the time series. For all calculations oery clear convergence at-=3 for short time delays, re-
these laser data, we set the decorrelation time intewal
=25 andp,=1.0. s
Figure 15 shows the proportion of false strands evaluatec
on this data set. In contrast to the circuit data, the statistic 1¢*
does not converge to near zero for a sufficiently high embed-
ding dimension. This is because, in contrast to the previous 19
data, this data set is quite noisy, both from experimental o
guantization noiséabout 0.4% plus what are believed to be
fluctuations from spontaneous quantum emisgjpossibly
dynamically amplifiedl in the lasing medium itself. Never- ¢ |
theless there is a good minimum in the embedding statisticg 10
for de=3 andT=3 or T=4. As the embedding dimension ™ s | |
increases past its best value, the statistic tends either to ple
teaus at a nonzero level or even starts to increase again. Th 10® | Cha s -
is a result of using the normalized principal component trans- ’
formation (A5) that, as previously mentioned, tends to am- 10 |

B. Laser

102 | -

ve power
-

R

plify noise in higher coordinategThe local maximum at 102 . . s .

de=4 for some time-delays is apparently a spurious artifact 0 02 O}tquency (Mlg-z‘-’; 0.8 1

of the particular state-space structure, as it vanishes upon

mild filtering as seen belowWith chaotic signal with mod- FIG. 16. Power spectral density of original and low-pass filtered

erate noise, as with these data, one typically seefianum laser intensity signal. Filter eliminates 1.4% of power in original
or at least a significant plateau in our statistic at a goodignal.
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fact, employ a smaller embedding dimension by going to
smaller time delays, which also results in a smaller statistic,
implying a “more deterministic” mapping(Noise, a more
complicated attractor, and finally high local Lyapunov expo-
nents can mimic the effect of topologically false neighbors.
The transformation ensures that the improvement in the sta-
tistic is not illusory, reflecting only correlation betweeh

+1 and the previoud vector components. It must be admit-
ted that the normalization in the transformation amplifies
noise by effectively taking differences, but we emphasize
that one needot continue to employ this transformed space
in further analysis, prediction, or control of the system. By
our special construction that distinguishes our transformation
from the standard principal components transformation, the
Time Delay topological properties of this space are the same as those of
Dimension the untransformed time-delay embedded space with the same

FIG. 17. Opaque surface: Proportion of false neighbors for in-tIme delay—including the presence or absence of dynami-

) . cally illegal self-intersections. Therefore, if one finds that
tensity fluctuations of the controllable laser dataset passed through . . .
low-pass linear digital filter. A clear minimum at a value near zero e=3 is good afT=2 or T=4 V|eyved in the transformed
is seen atl.=3 with time delays betweefi=1 andT=4 in units  SPace, one can then use the ordinary time-delay embedded
of the sampling interval. Clear surface: same data with last compoSpace aff =2 or T=4, knowing that it has been topologi-
nent shuffled. cally unfolded. Incidentally, the false strands statisticTat
=9 computed on the untransformed space also shows a
doubling our confidence in the low-dimensional nature of theminimum/plateau al.=4 but at a much smaller level of the
signal. The fact that the statisticé¢=2 is not all that large  statistic, as a result of the lack of noise amplification. The
is because the signal is, in fact, approximately periodic in thetatistic computed beloW=5 or so on the untransformed
short term, and so can “almost” be embedded in two dimenpace is zero everywhere. The fact that we dee 4 both
sions. with and without the transformation &=9 reinforces the
Figure 18 compares the statistics for different time delayseonclusion thatlz=4 is genuine and we need not worry that
The mutual information criteriofl4] suggests using=9in  T=9 does not still show effects of linear correlation. The
order to maximally decorrelate components of the statgnessage is that examining the statistic on data subjected to
space. In this case, the results suggestdat4 would be  the global linear transformation increases confidence in the
necessary at this time delay. However, by using the speciglajidity of the result even if the original vector space is em-
principal component transformation, we see that we can, ifjoyed for later purposes. Finding an embedding that works
with three dimensions instead of four may be quite signifi-
cant, as there are sophisticated topological analyses of attrac-
tors based on linking numbers of embedded periodic orbits
whose mathematics only works properly in three dimensions.
We turn to another dataset from the same laser operated at

Proportion False Strands

2 different physical parameters, such that the experimental
g control scheme fails to operate. An off-line Fabry-Perot in-
8 terferometer shows that there now seem to be three electro-
i magnetic modes in one polarization and two in the other one
g | | active in this dynamical system. Again there were 100 000
'§ 0 data points at a sampling rate of 2 MHz. The dynamics ap-
g pears more complicated—the strong approximate periodicity
005 seen in the previous dataset is no longer obvi¢Ei. 19.

Figure 20 shows the false strand results. In comparison to the
shuffled data results, we identify this dataset as chaotic, but
higher dimensional and noisier than the previous one, as the
6 7 proportion of false strands never reaches a very small value.
The best minimum seems to occurdit=4 at T=2, with

FIG. 18. Lower solid curve: statistic for unfiltered dataset at best!€ Statistic remaining relatively constant or slightly increas-
(lowest minimum time delay, T=4. Lower dotted curve: statistic INg for higher dimensions, as expected with noise. For
for filtered dataset at best time deldy=2. Both these indicate =3 andT=4 the statistic also appears to plateauat4,
de=3. Upper solid curve: statistic for unfiltered dataset at timelending some confidence that the value foundTat2 is
delay suggested by mutual informatioh=9. Upper dotted curve: correct. Minimum embedding dimension is not invariant
statistic for filtered dataset at same time delBy,9. with time delay, but often does not change drastically. At

G2 3

4 5
Embedding Dimension
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FIG. 19. Sample of time series from uncontrollable Nd:YAG ) . )
laser dataset. FIG. 21. Power spectral density of original and low-pass filtered
laser intensity signal, uncontrollable dataset. Filter eliminates
o o ~ 0.86% of power in original signal.

T=1 the amplification of noise in the global decorrelation

appears to make results worse.

As with the controllable dataset seen before, these dat\fgve WOUId. recommenﬂ using an embed(_jmg dlmens_i@n
=4 and time delayT=2. The decorrelation global linear

have a substantial amount of noise, and so we run the alg?fansformation is not strictly necessary, and a pure time-
rithm on a low-pass filtered version of the data. Figure 21 y Y. b

- . . . delay embedding does not introduce the transformation’s
shows power spectra for original and filtered signal. Figure

: ..~ . noise amplification but has significant autocorrelation. The
22 demonstrates the improvement that the Iow—pgs_s f'ltermﬂwutual information criterior{ 14] recommended the use of
has made, as seen by the lower false strand statistic, a MM_ 5 which unfortunately did not give a clear indication of

mum statistic of 3.5% false strands, less than half the mini-

mum value seen without filtering. The results now demon-the embedding dimension. The freedonTiliowed by our

strate evidence of low dimensionality. For further analysis,thhOd perm|tte(_j us to search f_or an _emb_eddmg that does
show honest evidence of low-dimensionality. Without the

principal component transformation we would have been re-
quired to stay aff =5, which did not show convincing low

0.6~ dimensionality on this realistically difficult experimental
dataset. The filtering was not particularly severe, eliminating
PLIS
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FIG. 20. Opaque surface: Proportion of false strands for inten- 78
sity fluctuations of the laser, for uncontrollable dataset. The mini- 5 6
mum occurs atle=4, with time delayT=2 in units of the sam- _
pling interval, which is 0.5us. Compared with the controllable — Time Delay
dataset, these data require a higher embedding dimension and have
more noise. Mutual information time i6=5, which doesot pro- FIG. 22. Opaque surface: Proportion of false strands for inten-

vide a good embedding, as can be seen by the high absolute level sity fluctuations of the laser, for low-pass filterd version of uncon-
false strands at that time delay, as well as the absence of any cletiollable dataset. Good minima occurdt=4, with time delayT
indication ofdg . Clear surface: statistic with the last vector com- =1 or T=2. Clear surface: statistic with last vector component
ponent shuffled. shuffled.
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FIG. 23. Closeup of filteredsolid line) and original(circles o i . )
uncontrollable laser dataset. The filtering only smooths and does not FIG. 24. Fluidized bed pressure time series. There is a strong
otherwise change gross characteristics of the time series. natural periodicity.

only 0.86% of the power in the original signal. Figure 23 d ber of i dd ical
superimposes the filtered and original signals. Because of thse}/Stem emonstrqtes a humber ot comp icate ynamical re-
: imes, one of which we briefly examined. The experiment

properties of the decorrelation transformation we can be a itself is an idealized model of particulate transport devices

sured the improvement in the results was not spurious—af o . o .
artifact of the filter low dimensionality out of a high- used in industrial applications. The quantity measured was

: . . ) . from a differential pressure transducer taken between 23 cm
d|men3|0_nal noise signal The phase-space structures of O"dhd 35 cm above the air input grate, which defines the bot-
nal gnd flltered ;lgnals appear reasonably similar to.the EYom. The pressure output at each cross section was the aver-

Filters with either lower or higher cutoff frequencies did age of four individual sensors distributed around the circum-

not appear to give as good results as that shown previously rence of the device. The data, 60 000 points in total, was
considering the best result to be that which gives the deepeé?gitized at 12 bits at '200 Hy ' '

minimum in the statlstlt_:. Lgss filtering left too much noise in In the regime examined, the data seem to exhibit approxi-
the signal, and more filtering apparently harmed the recon- g . : :
mately periodic or chaotic behavior with a clear natural fre-

structed phase-space structure, resulting in less clear evi- ency viewed by the eyig. 24. Chaos might be a likely

denpe_ of chaos, apd thus a h|gher statistic. The false Strarhypothesis, but the results of the false strand statistic surpris-
statistic now provides a nontrivial criterion to choose the.

tvoe and amount of filtration that aives the most cleanl ingly suggest otherwise. Figure 25 demonstrates a high level
YPE : . . 9 T Yof false strands that is nearly completely independent of time
low-dimensional signal. We emphasize this is “blind” noise

reduction—we have no specific model for the system—an(gelay and embedding dimension. There is no compelling evi-

so it is quite sianificant to have an independent means t&€"Ce for low dimensionality in these data, with a noisy lin-
evaluateqthe sugcess of the filtering. In thFi)s regard a sim I%ar system with a sharp resonance being a reasonable alter-
N o e P 9- 9 i PR ative. The overall level is lower than that seen with shuffled
empirical predlctpn error” criterion could be fooled; a very data, indicating the presence of some sort of nonlinearity. We
severe low-pass filter can result in extremely smooth dat%ote,that the Fourier transform surrogate data meﬂﬁﬁﬂi.
that are very pred|ctablr-,j In Fhe short term, yet do.n_ot have aejected its null hypotheses of linearly correlated noise and
Iovy—dlmenspnal deterministic gmbeddmg..\/.Ve anticipate tha{he same warped with a static nonlinearity on this dataset
noise reduction methods designed s_peuﬂcglly for Chao“(l;mplying that the dataset was more predictable to a statisti-
data[ 26] would work beﬁgr than the simple filter emplqyed (fally significant degree. It is not clear whether this is because
here, and that our statistic would be useful as an arbiter o

how much cleanina by these alaorithms one should emplo the data authentically do not fit either null hypothesis, or
g by 9 PO%yhether this is because of the finite-frequency resolution

- flaw inherent in the Fourier transform method when applied
C. Fluidized bed to a signal with a significant dominant frequency. The false
Our final experimental example is a pressure time seriestrand method appears to be more useful in positively iden-
from a fluidized bed experiment. The apparatus was a 2.5 rtifying low dimensionality when one looks for proper struc-
long hollow tube of 10 cm inner diameter. A quantity of ture with T anddg to indicate chaos. The older false neigh-
575 wm micron mean diameter stainless steel bearings waors method[5] showed ambiguous results that could
subjected to a regulated upward flow of air from a distributorpotentially have been construed as indicatingga=6 em-
plate on the bottom of the tube. With sufficient air flow, the bedding; the strand correction of this paper eliminated that
mass of particles become suspended and possess “fluidlikespurious decrease with increasidg, and the decorrelation
behavior, hence the name. With slightly higher air flow, thetransformation eliminated systematic changes with
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T N false neighboring trajectory along with good neighbors will
: : e, certainly result in a poorer fit overall and hence higher error,
e but this is a roundabout method of finding incorrect embed-

A dings, as one cannot distinguish this situation from that
054" where the general error level is high due to other reasons,
' - — 5 : including bad choices of model. There is no chance that a

Z 044 . . . .

204 self-crossing would be missed when counting single nearest
éo. _______ neighbors, as one examines the entire reference trajectory.
g The point is that one is interested only in thetreme events
§02~4 ¢ Gt n L n TR T

likely to result from misembedding, not a typical prediction.
. There is also an advantage to having an easily interpreted
ey absolute scale for the statistic in contrast to the one where
one examines relative changes with trial embedding dimen-

:, sion. That is, convergence to a small proportion of false
50 7 simonci strands, for example 1%—-5%, suggests a good embedding of

HREnsan low-dimensional chaos in contrast to convergence at 20%.

One also would like to eliminate systematic effects that

FIG. 25. Opaque surface: False strand statistic for fluidized be@hange with dimension. One of the most frequently encoun-
pressure signal. Clear surface: Statistic for shuffled last componenigred problems is that the typical distance to nearest neigh-
The fact that the opaque surface is below the level of the cleabors increases substantially as dimension is increased with-
surface indicates the presence of nonlinearity, but the absence ot regard to self-crossing. This means that statistics based
structure in theT-d plane and the relative high value of the statistic on ratios of vector distances will often have a strong bias
does not support the hypothesis of low-dimensional chaos. Noiswith dimension, usually resulting in more apparent “predict-
periodicity is the more likely diagnosis. ability” as dimension is increased. This fact also makes ex-

V1. DISCUSSION AND CONCLUSION amining a fixed-sized neighborhood problematic as the rel-
evant distances change with trial dimension. A fixed number

The essential idea behind our method and nearly all otheof neighbors is thus easier, and if one takes that to its logical
methods to determine the minimum necessary embeddingonclusion, one ends up examining single nearest neighbors.
dimension from data is to identify or quantify the prevalence Finally, we believe that the problems we examined with
of local phase-space regions where the crossing of orbitsversampled data would show up in any local phase-space
indicates inability to predict where orbits should go—that is,statistic. It is not at all clear to us how to correctly account
it is an indication that in the embedding dimension chosenfor a high sampling rate with statistics substantially more
the system is not deterministic. complicated than false nearest neighbors.

For example, Casdagli27] recommends constructing Most published techniques developed to distinguish chaos
nonlinear empirical predictors that approximate the unknowrfrom colored linear noise have relied on the surrogate data
implied dynamical system using the observed data, and thetechnique(with the exception of time-reversibility methods
seeing where the measured average prediction error drops afh exhaustive list would be excessively long, but we point
sharply with increasing embedding dimension. This is a steput Ref.[32] which advocated the use of surrogate data as a
in the right direction, as it is sensitive to the accidental lackbackstop against spurious observation of low false neighbors
of determinism, but we wish to have a specific and easyn correlated time series seen in the original false neighbors
method that directly attacks the minimum embedding dimenmethod of Ref[5]. There are some undesirable technicalities
sion problem. With complicated prediction functions— with surrogate data methods and our direct alternative may
designed to give good predictions, but not calculate embedse an attractive alternative. Typically surrogates are con-
ding dimension—one has to consider systematic variations istructed by inverting a phase-randomized version of the dis-
performance with dimensionality that are independent of therete Fourier transform of the signal. In generating surrogate
topological question of determining the embedding dimen-data, the Fourier transform assumes that the signal has a
sion. period equal to the length of the dataset, i.e., the signal wraps

Good empirical predictors are not necessarily the besback around and repeats itself. If the first and last points of
tests of minimum embedding dimension. Most statistics ofthe scalar signal do not “match(and usually they do npt
this nature, and indeed most alternative methods proposete effect is to introduce what looks like a sharp discontinu-
for determining embedding dimensif®8—31], employ vari- ity which translates into more high frequency power than
ous kinds of averaging that seem to obscure the desired réhere should be. If the original data is reasonably noisy then
sult. The first question is whether to compute an averagéhis end effect has little consequence. If, however, the origi-
quantity over some neighborhood. If one is interested imal dataset is smoottiittle power in high frequencigsthen
goodpredictionsthen this is beneficial, as it averages out thethe surrogate datasets made from the Fourier transform
effect of noise and aids statistical precision in the fitting pro-method will have noticeably higher frequency noise because
cesses. The consequence of an incorrect embedding is nibte Fourier transform was sensitive to a high-frequency-
low-level noise but occasional self-crossings that result ircontaining discontinuity in the signal. If the original data
macroscopicdivergences at future iterations. Including a were just very smooth colored noise then this test will spu-

20

time delay
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riously reject the null hypothesis because the surrogates wilbw-dimensional data show a characteristic behavior, with
be less predictable than the original due to this excess dhlse strand proportion bottoming out or plateauing once the
higher frequency noise. There is the minor issue that theorrectdg has been achieved, and with the overall level of
simplest efficient subroutines for discrete Fourier transfornfalse strands increasing past the optinigbecause of cha-
only operate on datasets sized in powers of two, whereas tH#ic decorrelation, and a global increase in the complgxity
technique presented in this work has no such restriction. Of the reconstructed attractor, and with the statistic some-
In many ways the surrogate data technique is often  times increasing below the bestas noise is further ampli-
powerful—“power” in the purely statistical sense—becausefied: _ _
it can easily sense a deviation from the particular null pro- (4) By comparison to results seen when shuffling the last
cess embodied in the surrogates, but without giving furthefFOmponent, the statistic gives a good practical of easily dis-
insight into the nature of the rejection. The data may be fronfinguishing chaos from colored noise. It requires much less
some sort of noise process with a nonlinearity somewhagomputation than the standard surrogate data approach. In
different from the Gaussianizing histogram transformationgddition, it successfully distinguishes noisy periodicity and
often used in simple null hypothesf20,21). Local predic- other_lntentl_onally tricky highly resonant linear systems from
tion error statistics used frequently in surrogate data method§W-dimensional chaos; these may frequently fool surrogate
are designed to show a distinct difference with low-data methods. We do not present results using a more rigor-
dimensional chaos, and so a very clear rejection of its nulPus null hypothesis test, though this test is obvious in con-
hypothesis over many time delays and a plateau with increa§iruction given the sets of extra distances on original and
ing d often suggests low dimensionality, but in our opinion, Shuffled data. We feel that as a way of positively identifying
not as convincingly as low proportion of false strands in anlow-dimensional predictability mgtgad of a mere rejection of
absolute scale. In surrogate data methods one looks fétnull, the presence of characteristic behavialdrT as well
strong predictabilityrelative to appropriately constructed aS & ree_lsonably _smaII apsolpte value of'the statistic is more
colored noise. There is no way to know just how much morecompelling than just a rejection of a particular null test.
predictable one should be with deterministic chaos. With ~Given the comparative simplicity and low computational
false strands, we do know that, at least, in principle, thd€Sources necessary for thls_algonthm, we believe it to be a
statistic should go taerowhen we have a deterministic pro- USeful tool as a *first look” into the nonlinear dynamical
cess unfolded in the correct embedding dimension. characteristics of many kinds of_expen_menta! signals, in the
In sum, we have demonstrated an algorithm to find theVay that the Fourier transform is a window into gross fre-
minimum embedding dimension from observed data. It of-duéncy domain behavior and other linear features in a
fers a number of advantages over previous approaches, su%ﬁSteml-
as follows.
(1) Consideration of effects due to high sampling rate
data. Large amounts of well sampled data are often desirable
for state-space algorithms and statistics, as they trace out the Wwe thank members of INLS/UCSD for advice and discus-
attractor well. Changes in sampling rate irrelevant to fundasjon, mentioning Reggie Brown and Sid Sidorowich among
mental dynamics can cause systematic changes with mamythers. M.K. is indebted to Lou Pecora of the Naval Re-
statistical quantities, often giving spurious tendencies towardearch Laboratory for valuable communication and espe-
indicating low dimensionality. The strand concept is a intu-cially thanks Dave Pritchard of the Center for Nonlinear
itively attractive and experimentally successful countermeastudies, Los Alamos National Laboratory for comments on
sure. the manuscript. We are grateful to N. Rulkov of INLS for
(2) Consideration of effects due to high autocorrelation,providing useful data. We also thank C. Stuart Daw of Oak
which often comes with well sampled data of chaotic flows.Ridge National Laboratory and Nick van Goor of the Uni-
The normalized principal component transformation elimi-yersity of Tennessee for providing the dataset.
nates all linear correlation between components of the state
space and thus many systematic convergences of empirical
statistics as the time delay gets short. This permits one to APPENDIX: DECORRELATION TRANSFORMATION
explore a wider range of time delays than if one were re- ) .
quired to keepr sufficiently large to ensure component wise With a Iarge'N-(d+1) mairix A of t'hey vectors of the
decorrelation with an ordinary embedding. We have seen exdatasetA;;=y(i);, we compute the singular value decom-
amples where time delays smaller than those normally emPOSition with conventional algorithms,
ployed appear to give cleaner embeddings at a lower dimen-
sion and a more secure indication of low dimensiqnality. We A=UDVT (A1)
constructively demonstrate an orthogonal rotation of the
standard principal coordinate space that ensures the topologi-
cal answer found in the transformed space remains valid fowith U and V orthogonal andD diagonal. With these, the
the untransformed time-delay embedding space. transformation to normalized principal coordinates is
(3) The elimination of the systematic tendencies pushing
down the old false neighbor statistic for sma@lkllows one
to plot our statistic over the entirde-T plane. Authentic 1see Ref[33].
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1 nate system, it is a fortuitous coincidence that the space
B=AV—D1, (A2)  formed by the firstd components is an orthogonal rotation of
N*/2 the space we would get if we had performed an ordinary
, , ) normalized principal component transformation on the
with B theN- (d+1) matrix of transformed vectows In this  §.dimensional time-delayed embedded vectors. To sum up,
framework, the cross correlation requirement is satisfied, the N by d+ 1 matrix of vectors that we actually embed to

find false strands is

1
NBTB= l. (A3) x o x ok
D! *  x * *
We apply an additional orthogonal rotation designed such B=A| V—|Q=A| . ) . (Ab)
that the firstd coordinates in the new state space are a func- VN : R
tion of only the firstd coordinates of the original delay space. 0O 0 zeros x

If the transformation to principal coordinatesBs= AT then

it is easy to show that any additional orthogonal rotatn
=BQ=ATQ preserves the identity cross-correlation matrix.
For our purposes we need not preserve the other property

the conventional principal coordinates transformation—that . . . . .
the projection of the data along each axis has the maximurflimensional embeddings processed by a normalized princi-

variance/power not accounted for by previous axes. It thu?"’.lI component tran§formation will tend to successively am-
suffices to find an orthogonal matri@ such thatTQ has pllfy noise and thus Increase the proportion of observed fgl_se
zeros all along the bottom row except for the last column Neighbors as the test examines the last, and therefore noisiest
This ensures that the first columns ofC, the transformed Compof‘e”F- The d+1).th component of the. transformed
state space, only depend on the figstolumns ofA, the space is s!m|lar to a 'flnlte d|fferenc§ approximation of tlhe
original time-delayed space. We constructively find such adth der_lvatlve of the signal. We mention t_ha'g any prerotation
matrix as follows. Take the d+1)x(d+1) matrix T one mlght_ attempt on th_e standard principal components
=N"Y2/D~! and extract the last row;=Tg,q1;. Then the Spacego d|str|but(_a th? NOISE across _all compon¢n$sun-
necessary orthogonal transformation is one by the rotation in EqA4). ThIS.IS the price that one

pays for ensuring no linear correlation among components

Q=H(x—|x|egs+1), (A4)  and requiring the only last component of the transformed

space depends on the last component of the initial space. The
with ey, ¢ the unit vector in the d+ 1)th direction, and the transformations in this section cure the problems found in
Householder matrik15] H(z) =1—2zz"/|2|%. In this coordi-  Ref.[17].

The standard and modified rotation to principal coordi-
nates share a common feature: at least for small time delays,
ccessively higher coordinates correspond to successively
igher orders of derivativegl6]. This means that higher-

[1] J.P. Eckmann and D. Ruelle, Rev. Mod. Phy&. 617 (1985. Hopkins University Press, Baltimore, 1989

[2] T. Sauer, J.A. Yorke, and M. Casdagli, J. Stat. PI8f.579 [16] J.F. Gibson, J.D. Farmer, M. Casdagli, and S. Eubank, Physica
(1991 D 57, 1(1992.

[3] M. Ding et al, Phys. Rev. Lett70, 3872(1993. [17] D.R. Fredkin and J.A. Rice, Phys. Rev.5d, 2950(1995.

[4] D.T. Kaplan and L. Glass, Phys. Rev. Le8, 427 (1992;  [18] H.D.l. Abarbanel and M.B. Kennel, Phys. Rev. 4, 3057
D.T. Kaplan and L. Glass, Physica &, 431(1993. (1993.

[5] Matthew B. Kennel, R. Brown, and H.D.I. Abarbanel, Phys. [19] J. Theiler and S. Eubank, ChaBs771 (1993.
Rev. A45, 3403(1992. [20] M.B. Kennel and S. Isabelle, Phys. Rev44, 3111(1992.

[6] J.H. Friedman, J.L. Bentley, and R.A. Finkel ACM Trans. 5q] j Theileret al, Physica D58, 77 (1992; D. Prichard and J.
, "R"aFthéSOft"l‘l’-ilm? (hlgﬁéé c76 (106 Theiler, Phys. Rev. Let@Z3, 951 (1994).
[7] R.F. Sproull, Algorithmicab, (1991). [22] C. Rhodes and M. Morari, Phys. Rev.55, 6162(1997).

%g} j IE::E:’ iﬂzz E:X’ ﬁi égg;gggg [23] R. Brown, N. Rulkov, and E. Tracy, Phys. Rev.4B, 3784

. (1994).
[10] J. Theiler, Phys. Lett. A55 480 (199). .. . .
[11] H.D.I. Abarbanel, R. Brown, J. Sidorowich, and Lev Sh. Tsim- [24] N. Rulkov, A. Volkovskii, A. Rodriguez-Lozano, E. Del Rio,
ring, Rev. Mod F"hy365 13'31(1993 ' and M. Velarde, Int. J. Bifurcation Chaos Appl. Sci. Erdy.
[12] A.R. Osborne and A. Provenzale, Physica85 357 (1989. 669 (1992. ) )
[13] E.N. Lorenz, Tellus, Ser. 6A, 98 (1984). [25] H.D. I Abarbanel, Z. Gills, C. Liu, and R. Roy, Phys. Rev. A
[14] A.M. Fraser and H.L. Swinney, Phys. R@8A, 1134(1986. 53, 440(1996

[15] G.H. Golub and C.F. Van LoarMatriX ComputanoniJohnS [26] E.J. Kostelich and T. Schreiber, Phys Re\Aﬂ,-__ 1752(1993

026209-17



MATTHEW B. KENNEL AND HENRY D. I. ABARBANEL

[27] M. Casdagli, Physica 35, 335(1989.

PHYSICAL REVIEW E 66, 026209 (2002

[33] ForTRAN90SOUrCE code angse Linux binary software to per-

[28] W. Liebert, K. Pawelzik, and H.G. Schuster, Europhys. Lett.

14, 521(1991).
[29] K. Pyragas and A. Cenys, Litov. Fiz. Sb7, 437 (1987).
[30] J. Gao and Z. Zheng, Phys. Lett.181, 153(1993.

[31] R. Huerta, C. Santa Cruz, J.R. Dorronsoro, and V. Lopez,

Phys. Rev. E49, 1962(1994).
[32] R. Hegger and H. Kantz, Phys. Rev.6B, 4970(1999.

026209-18

form the false strand calculation is available at ftp://
lyapunov.ucsd.edu/pub/nonlinear/fns.tgz and at the AIP Elec-
tronic Physics Auxiliary Publication Service, http://
www.aip.org/pubservs/epaps.html. See EPAPS Document No.
E-PLEEES8-66-021208, which includes EPAPS files Read-
me.TXT, false_Strands_f90.f90, fns_linux_binary, lor84x.dat,
and installation.txt



