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False neighbors and false strands: A reliable minimum embedding dimension algorithm
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The time-delay reconstruction of the state space of a system from observed scalar data requires a time lag
and an integer embedding dimension. We demonstrate a reliable method to estimate the minimum necessary
embedding dimension that improves upon previous methods by correcting for systematic effects due to tem-
poral oversampling, autocorrelation, and changing time lag. The method gives a sharp and reliable indication
of the proper dimension. With little computational cost, the method also distinguish easily between infinite-
dimensional colored noise—including noisy periodicity—and low-dimensional dynamics.
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I. INTRODUCTION

One of the foundations of the analysis of chaotic tim
series is the Takens embedding theorem@1,2# that allows us
to unfold the attractor of a system from observatio
of a single dynamical variable. Suppose that t
dynamical system which is the source of some obs
vations evolves in a multidimensional phase spacex(n)
5@x1(n),x2(n), . . . ,xd(n)# asx(n11)5F(x(n)), and that
we observe a scalar component ofx(n) or a scalar projection
of the x space:s(n)5S(x(n)). The theorem guarantees th
if we perform a correct time-delay embedding of this sca
signal, we may construct adE-dimensional space that inhe
its many of the properties of the originald-dimensionalx
space even though thatx space is unknown to us. The scal
data are replaced by the vectors

y~n!5@s~n!,s~n1T!, . . . ,s„n1~dE21!T…# ~1!

as the description of the dynamical system. T
dE-dimensional space is the reconstructed state space
y(n) T is the ‘‘reconstruction time delay,’’ an integer mu
tiple of the sampling time. The integerdE is the ‘‘embedding
dimension.’’ WhendE is large enough, the points in this re
constructed phase space are related to the original s
through a diffeomorphism, namely, a smooth, differentiab
and invertible transformation. Many important properties
the original dynamics are preserved, including that we h
an implied deterministic time evolution in they space corre-
sponding to the unknown evolution in thex space. That is, if
x(n) is followed by x(n11) in the evolution of the under
lying system, then its counterparty(n) is followed by y(n
11) in the reconstructed state space. Also since the orig
orbits x(n) cannot cross themselves in the original pha
space, whendE is large enough, they(n) orbits cannot cross
themselves in the reconstructed phase space. The the
states that whendE.2dA , where dA is the box counting
dimension of the orbit in the original space, this gives
sufficientcondition for a correct embedding@2#. In the unre-
1063-651X/2002/66~2!/026209~18!/$20.00 66 0262
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alistic limit of an infinite amount of infinitely precise data
any time delayT will work. In practice, of course, there ar
approximate upper and lower limits to the values ofT which
are acceptable.

We address the question ‘‘Given actual observed d
what dE do we require to ensure a deterministic mapping
From a purely topological point of view, there is no pena
as long as a sufficiently largedE is employed, but there is no
benefit using a larger than necessary dimension. Practic
however, there may be a penalty associated with using
large a value fordE . When dealing with finite amounts o
finite precision data, one would usually like to use as f
coordinates as possible. First, as one increasesdE , the noise
that inevitably accompanies any real signal contaminates
components of the vectory, and will populate every dimen
sion whether or not there is a real signal there. This is ob
ously undesirable. Second, if one uses the reconstru
phase-space vectors to make empirical models for predic
or control, then using unnecessarily high dimension ha
significant penalty, especially as the computational cost
number of free parameters of many estimation and predic
methods scale exponentially withdE . Finally, an indication
of the minimum embedding dimension puts an upper bou
on the dimensionality of the system. A strong empirical
dication of a topologically satisfactory small embedding
mension provides evidence that the observed signal m
have, in fact, arisen from a low-dimensional dynamical s
tem. These are the core issues discussed in this paper.

Our goal is to find the minimum necessary embedd
dimension denoteddE . Ding et al @3# demonstrated that the
commonly used correlation dimension reaches its cor
value, in principle, as soon as the trial embedding dimens
dE is an integer just greater than the correlation dimension
the attractor. For purposes of computing the correlation
mension, then,dE.dA will do. This may still be insufficient
to unfold the attractor for purposes of revealing the dyna
ics. As a simple example, consider a limit cycle in a flo
This attractor has a geometric fractal dimension of one.
some two-dimensional projections this limit cycle could
©2002 The American Physical Society09-1
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topologically equivalent to a circle, but in others, it cou
appear as Arabic numeral ‘‘8.’’ At the intersection point th
implied vector field in the reconstructed state space is
well defined and the embedding is inadequate for dynam
reconstruction though it is sufficient for determining the ge
metric fractal dimension~i.e., one!. This is not an isolated
pathology; in general, an embedding dimension adequate
evaluating the correlation dimension may not be suffici
when dealing with the actual underlying dynamics which
at the source of the observations.

The now popular false nearest neighbor method@4,5#
yields the necessary global dimensiondE for unfolding an
attractor using only observed data. It assures that points h
state-space neighbors that are a result of the dynamics r
than being projected from near one another as an artifac
using too low an embedding dimension. Choosing an in
propriately lowdE will cause parts of the attractor, which a
widely separated in the original, but unknown, state spac
overlap spuriously in the reconstructed space. To detect
the false nearest neighbors test constructs vectors from
data in dimensiond51, thend52, and so forth, asking a
each stage what fraction of nearest neighbors in the data
as seen in dimensiond, fail to remain close in dimensiond
11. When all nearest neighbors are true, that is, do
significantly move apart when we go to the next dimensi
we have found the necessary minimum embedding dim
sion dE5d.

This paper demonstrates a number of improvements to
earlier method that address some of the issues we have
countered in dealing with various data sets from fluid d
namics, climatic variations, nonlinear circuits, laser dyna
ics, and neuronal systems. The outcome of the sugges
we make here is a more reliable algorithm that elimina
various systematic effects with embedding dimension so
to give quite reliable answers. Specifically, we provide c
rections ~1! to account for the neighborhood properties
oversampled continuous data,~2! to account for autocorrela
tion when a small time delay is used, and~3! and to account
for sparsely populated regions of the attractor.

A principal goal is to provide asharp indication of the
minimum embedding dimension by eliminating systema
effects with dimension, sampling rate, and correlation t
might otherwise make the determination ofdE less certain.
The improved statistic also provides a fast and powerful
against colored noise with linear correlation. If such a sig
has strong spectral peaks, so we might call it ‘‘noisy perio
icity,’’ have smooth and often ‘‘deterministic-appearing
structure in phase space. It is important to be able to relia
distinguish such signals from low-dimensional determinis
chaotic dynamics.

II. NEIGHBORS: TRUE AND FALSE

The implementation of our ideas boils down to choos
criteria for determining an ‘‘illegal projection.’’ For each ob
served point on the attractory( i ) in d dimensions we find the
nearest neighbor, called ynn( i ). We then examine the sam
vectors ynn( i ) and y( i ) in dimension d11. This simply
means adding the (d11)th components( i 1dET) to y( i ),
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and similarly toynn( i ). If the distance betweenynn( i ) and
y( i ) in d11 dimensions is very large, then we have afalse
nearest neighbor. This is the hallmark of an illegal projection
caused by improper embedding. Efficient computer al
rithms @6,7# can find near neighbors of a point in anN point
data set inO(ln N) time, rendering the overall algorithm
O(N ln N) rather thanO(N2). The latter would make the
algorithm computationally infeasible for substantial datase

One part of the our earlier algorithm@5# compared the
ratio of the distance incurred by considering the (d11)th
component to the nearest neighbor distance ind dimensions.
A sufficiently high value of this ratio was deemed to indica
a ‘‘false neighbor,’’ namely, points close in dimensiond were
far apart in dimensiond11. The specific test for false neigh
bors was to evaluate if

uyd11~ i !2yd11
nn ~ i !u

Rd~ i !
.r r , ~2!

with

Rd~ i !25
1

d (
k51

d

@s„i 1~k21!T…2snn
„i 1~k21!T…#2 ~3!

the distance in dimensiond. If this ratio is greater than som
thresholdr r , we deem these pointsy( i ) and ynn( i ) false
nearest neighbors. Typically we take 10,r r,20.

This criterion alone had a flaw: the typical distance ev
to nearest neighbors can be substantial~even a large fraction
of the global attractor size! in higher-dimensional spaces
contrary to our low-dimensional intuition. This results in
downward bias of this ratio statistic with increasing embe
ding dimension. This occurs since the typical denomina
namely, the distance in dimensiond, got so large that an
authentically false neighbor would not result in a sufficien
high ratio to trip the false neighbor alarm. An infinite
dimensional white noise data set would indicate a small p
portion of false neighbors at a sufficiently high embeddi
dimension because of this effect. We still needed this tes
deal with significantly autocorrelated data, but we pres
here an alternate approach that appears to work better.

In our earlier paper@5# we dealt with the small noisy dat
set with a second ratio test comparing the augmented
tance in going from dimensiond→d11 to the overall size
of the attractor. If we are using time-delay embedding, th
each y(n) embedded ind11 dimensions consists of th
same vector as embedded ind dimensions with one new
element in the last position. In the case of a false nea
neighbor, the additional large distance in (d11) dimensions
will occur solely in the last component, because the firsd
components are constructed to be small by virtue of be
nearest neighbors. Imagine that the data are, in fact, w
noise of standard deviations. The absolute difference be
tween the (d11)th components of the vectors,uyd11

nn ( i )
2yd11( i )u will in probability be as large asA2s and many
nearest neighbors will register as false, as desirable for
class of signals. This suggested another test for a false ne
bor: ynn( i ) is a false neighbor if
9-2
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FALSE NEIGHBORS AND FALSE STRANDS: A . . . PHYSICAL REVIEW E66, 026209 ~2002!
uuyd11
nn ~ i !2yd11~ i !uu

RA
.ra , ~4!

whereRA is a scalar measuring the overall size of the attr
tor, andra a fixed parameter chosen externally, with typic
values between 1 and 2. We call this the ‘‘absolute’’ te
because it compares the size of the nearest neighbor d
tion to an absolute quantity independent of the nearest ne
bor distance. A reasonable choice forRA is

RA5S 1

N (
i 51

N

@s~ i !2 s̄#2D 1/2

~5!

with s̄ the average value of the observed scalar data. W
this test there is less intrinsic bias in its variation withd.

As our first improvement for the current work, we co
sider systematic effects with dimension; namely that d
tances increase with the dimension attempted. In Eq.~4! the
numerator will scale as this but the denominator, being
rived from scalar statistics, will not. Our criterion of a fals
neighbor uses the numerator from Eq.~2! over the denomi-
nator of Eq.~4!,

uyd11
nn ~ i !2yd11~ i !u

RA
.ra . ~6!

In the actual algorithm presented below, we employ this
terion to judge groups of neighboring points, not mere
single neighbors. Furthermore, with the decorrelation tra
formation also mentioned below, a relative ratio test~2! is
superfluous.

III. THE ALGORITHM AND STATISTIC

A. Removing spatial neighbors nearby in time

Often one is presented withoversampled continuous data.
The underlying physics may be governed by ordinary diff
ential equations, leading to smoothly observables smoo
varying in time. One must sample this data at a finite ti
resolution, and one ought to sample at a rate fast enoug
capture all the important dynamical behavior without alia
ing. Within reason, from this point of view, the more ove
sampling, the better it is, as it results in a smoother rec
structed flow.

Oversampling introduces complications into the fa
nearest neighbor algorithm. The data analyst might sus
oversampling when statistics of the time series demonst
significant autocorrelation. For instance, if the first loc
minimum ~if extant! of the average mutual information is
large integer times the sampling timets , then the data is
most likely oversampled. One can check this by remov
every other data point, and the average mutual informa
should show a minimum half as large as in the original da

This section discusses methods that discount system
geometric phenomena that could have a strong effect on
measured false neighbor statistic yet are irrelevant to
minimum embedding dimension question.
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If the sampling rate is fast, and successive scalar obs
ables differ only slightly, then temporally successive poin
in the reconstructed state space will also be close in sp
distance. With such an oversampled trajectory, however,
‘‘nearest neighbor’’ to a reference pointy( i ) will very often
be the next pointy( i 11) or, perhaps, the previous poin
y( i 21). The distance between the (d11)th coordinates of
these two points, the quantity going into the false neighb
test, will then never be large, simply because of the hig
oversampling rate. Under these circumstances, until the n
ber of data becomes enormous, one will never register a f
nearest neighbor, regardless of whether there is an ac
illegal projection. The average distance between points w
we haveN data is'1/N1/d in dimensiond. This eventually
becomes less than the distance between spatially succe
points in oversampled data, but the number of data may n
to be very large to accomplish this.

To illustrate this matter consider Fig. 1. Clearly the po
designatedynn( i ), and noty( i 11), is the nearest neighbo
we had in mind in developing the false nearest neigh
method. So we must tell the algorithm some way to dist
guish the correct, but potentially false, neighbor from t
nearest point along the same section of orbit lying close
dint of having oversampled the data. The fix for this proble
is now well known. When searching for nearest neighbo
one ignores all points within a certain temporaldecorrelation
interval Waroundy( i ). We want to exclude the entire ‘‘tra
jectory segment’’ temporally associated withy( i ), and not
necessarily justy( i 61). If we did only that, theny( i 62)
could end up being a nearest neighbor for a highly ov
sampled trajectory.

This ‘‘decorrelation correction’’ was applied by Theile
@8–10# in the context of computing the correlation dime
sion @11# from observed data. Osborne and Provenzale@12#
found that high-dimensionalcolored noise could result in
apparently finite values of the correlation dimension, there
casting doubt on some findings of low dimensionality in e
perimental data by using this method. Theiler demonstra
that this finite-dimensional correlation dimension came ab
by counting neighbors on the same trajectory segment.
decorrelation correction eliminated this effect.

The results ought not depend very much on the traject
segment interval chosen, as long as it is long enough to c
pletely exclude the local trajectory segment, and not so lo

FIG. 1. An illustration of false neighbors and false strands.
9-3
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MATTHEW B. KENNEL AND HENRY D. I. ABARBANEL PHYSICAL REVIEW E 66, 026209 ~2002!
that it does not exclude too many valid parts of the data
This sounds like smoke and mirrors, but we have found t
a good rule of thumb is to choose an interval about two
three times the first minimum of the average mutual inf
mation. We have found good results when we choose
decorrelation interval to be a time scale on which the aver
mutual information has reached its asymptotic zero value
the results change substantially with varying decorrelat
interval, that is a warning that the data may be nonstation

B. False strands

The standard decorrelation window is not entirely a sa
factory correction, however. Another important issue is illu
trated in Fig. 1, showing a typical situation for legal embe
dings. If, by contrast, the two orbit segments were illega
projected then generically they tend to make a close pas
some strong angle instead of remaining close with ne
parallel flow vectors. The pointynn( i ) is a true nearest neigh
bor to y( i ), andynn( i 11) is a true nearest neighbor toy( i
11). There is no new information in this fact.It is a simple
consequence of the oversampled trajectory and autoco
lated data. As the sampling rate of the data is increa
trajectory segments in a ‘‘true neighborhood’’ will acqui
many more points that register as true neighbors, as thes
just iterates of previously found pairs of true neighbors. If
increase the sampling rate in a false neighborhood, the n
ber of false neighbors would increase by a small amoun
most, because false trajectory segments cross at ob
angles and cannot remain parallel to the reference trajec
for very long.

The overall systematic effect is to diminish the final s
tistic: theproportion of false neighbors, as the sampling rate
is increased. By choosing a high enough sampling rate
proportion of false neighbors could move down to a sm
number, even with an unacceptably low embedding dim
sion. This has nothing to do with the geometric issue we
addressing in determining a good value fordE .

There is yet another problem: as the dimension increa
close true trajectory segments may stay together for lon
and longer lengths of time due to the geometry of hig
dimensional spaces. This imparts another downward
dency to the false nearest neighbors statistic, which beco
stronger as dimension increases.

Our approach to addressing this matter is to examine
countnearest strandsrather than focus on nearest neighbo
alone. Given pairs of real nearest neighbor points we col
sets of these pairs which are direct temporal iterates of
another. We collect a whole strand of trajectory nearby to
trajectory we are presently examining. These sets comp
nearest strand pairs. The central statistic is then to find th
number of false nearest strands compared to the total num
of strands. Thus we eliminate the previously mentioned s
tematic error due to the changing sampling rate. Accordin
we name the proposed method ‘‘false nearest strands.’’

How do we identify strand pairs? A strand pair is a list
index pairs@ i ,J( i )# which in turn, designate the indices o
nearest neighbors in phase space. For eachy( i ) we find the
nearest nontrivial neighborynn( i ). This nearest spatial neigh
02620
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bor possesses time index J( i ); namely, J( i )
5argminJuuyd„J( i )…2yd( i )uu, subject touJ( i )2 i u.W. Next
we examine temporal predecessors of the reference
@ i ,J( i )#, @k,J(k)# starting atk5 i 21 and counting down to
k5 i 2W. We identify thatk* closest toi for which @ i ,J( i )#
is a direct temporal iterate of some point pair@k* ,J(k* )#,
that isJ( i )2 i 5J(k* )2k* . The pair@ i ,J( i )# is declared to
be on the samestrand pairas@k* ,J(k* )#, and we append it
to the appropriate list. Each point pair@ i ,J( i )# is associated
with at most one previously extant strand pair, the one c
taining @k* ,J(k* )#. If @ i ,J( i )# is not a direct iterate of any
@k,J(k)# for kP@ i 2W,i 21# then we create a new stran
pair and make@ i ,J( i )# its first member. The pair@1,J(1)# is
initialized as the first point in the first strand.

After examining all data, we will have accumulated a co
lection of strand pairs, each of whose elements are pair
points that have identical temporal offsets from each ot
and pointwise are nontrivial nearest neighbors. If two traj
tory segments travel parallel to one another and stay as n
est neighbors for a significant amount of time, as in Fig.
all these points will end up on the same single strand p
and thus they get counted only once. We denoteNs as the
cardinality of the completed set of strand pairs.

Designating strand pairs in this way automatically a
counts for the situation when more than one trajectory s
ment stays close to the reference segment, and the identi
the nearestone jumps back and forth between these traj
tory segments. If there were two segments for example, t
some point pairs will be assigned to one strand pair and s
to the other, but there will be just two separate strand p
constructed for this region. This becomes important if th
are a number of parallel trajectories in some region of ph
space but with data contaminated with a slight amount
noise. Our definition of strand pairs deals with this situati
well, in contrast to the slightly more intuitive notion of re
quiring strand pairs to encompass only consecutive poi
That alternative works well on very clean data, but wou
generate many new separate strands with a small amou
noise, which would nonetheless not represent ‘‘new’’ info
mation.

Once we have defined strand pairs, we define true
false nearest strands. There are many different reason
choices, such as,~1! a strand pair is false if any of its point
are false or~2! a strand pair is false if the closest point pair
false. We found best results if we choose to designat
strand pair as false when the averaged ‘‘extra distance’’ is
large. Suppose we have two strands of a strand pairS, the set
of reference pointsRS and the set of neighborsNS , in total
m5S point pairs. We evaluate the average distance of
d11th component of the vectory(k) (kPRS being a time
index of the points on the reference strand! from the d
11th component of its nearest neighbory„J(k)… on theNS
In particular, we compute

D~S!5
1

m (
kPRS

uyd11~J~k!!2yd11~k!u. ~7!

Each element of the summation is a distance exactly
numerator in Eq.~6!, with arithmetic averageD(a). If
9-4
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FALSE NEIGHBORS AND FALSE STRANDS: A . . . PHYSICAL REVIEW E66, 026209 ~2002!
D(S)/RA.r then this strand pair is declared false. The fin
statistic is the proportion of false strand pairs to the to
number of strand pairs.

Our goal is that each different strand pair should be
proximately independent information. One can then make
admittedly very rough estimation of the uncertainty by fu
ther assuming Poisson statistics. If the proportion of fa
strand pairs isNf /Ns , one could guess a standard deviati
of 6ANf /Ns , or employ a binomial model. With substanti
oversampling, using false points would greatly overestim
the precision.

With these oversampling corrections, one can use la
amounts of highly oversampled data with greater confiden
Figure 2 shows the proportion of false neighbors witho
oversampling corrections on the 16 384 points of thex coor-
dinate of a three-variable system of equations due to Lor
@13#,

dx~ t !

dt
52y22z22a~x2F !,

dy~ t !

dt
5xy2bxz2y1G,

dz~ t !

dt
5bxy1xz2z, ~8!

with parameters a50.25,b54.0, F58.0, and G51.0,
sampled at intervalsts50.05. The attractor has a dimensio
of about 2.5, which means it is rather more complicated t
the traditional Lorenz attractor.

As an initial time delay we chose a reasonab
T516—the average mutual information criterion indicat
T517. The figure demonstrates what happens to the f
neighbors statistic as this dataset is decimated by succe
factors of 2~scalar data excised! with the time delay in units

FIG. 2. False neighbors as a function of decimation interv
without sampling corrections. The data comes from the Lor
model of the atmosphere. The initial data are 16 384 points sam
with ts50.5. The data are then halved, then quartered, then cu
a factor of 8. This reduces the oversampling by hand.
02620
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of ts successively halved to maintain the same geome
thereby effectively lowering the sampling rate~increasing
ts). There is a convergence of the standard false neighb
criterion to zero starting atd54.

We often use as a rule of thumb a false nearest neigh
reading of less than 1% to indicate the necessary embed
dimension given clean data, but it would be rather difficult
make the distinction among dimensions 4 or 5 or 6 here
one increases the sampling rate the false nearest neig
statistic decreases. The same attractor that may have
peared to require six dimensions would perhaps seem
beddable in four or five dimensions simply by virtue of bei
more oversampled, which cannot have any substantial e
on the topology. By contrast, Fig. 3 shows the results wh
the two oversampling corrections are included. Ford,6
there are always a substantial fraction of false strands, w
above 4%, with a clean drop tozero at d56, regardless of
the sampling rate. This time, the proportion of false stran
for d,6 increaseswith increasing sampling rate: the attra
tor is more fully defined in all places, thereby providin
more opportunities to precisely observe the close cross
from illegal projections. We hypothesize that ford54 or d
55 there are a modest number of illegal projections
when looking only pointwise they may be overwhelmed
the increasing number of true neighbors in a highly ov
sampled systems. With the strand correction the drop-
and therefore the confidence we have in choosingdE56,
becomes sharper with more data. With the oversampling
rections, more data mean better results: a higher fractio
false strands fordE too small, and a lower fraction of incor
rect false neighbors for correctdE .

C. Removing linear correlation

Autocorrelation among observationss(n) has another ef-
fect on the observed minimum embedding dimension sta
tic. When the embedding time delay is short, then autoco

l,
z
ed
by

FIG. 3. False strands as a function of decimation interval,
cluding both sampling corrections. The data come from the Lor
model of the atmosphere. Initial data are 16 384 points samp
with ts50.5. The data are then halved, then quartered, then cu
a factor of 8. This reduces the oversampling by hand.
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MATTHEW B. KENNEL AND HENRY D. I. ABARBANEL PHYSICAL REVIEW E 66, 026209 ~2002!
lated behavior will make the proportion of false neighbo
registered appear small regardless of the actual dynamic
too short time delay folds the attractor onto a thin tube alo
the y15y25•••5yd line. Consider the ‘‘absolute’’ false
neighbors test

uyd11(i )
nn 2yd11~ i !u

RA
.ra . ~9!

If T is short, thenyd11( i ) is usually close toyd( i ) by auto-
correlation, likewise forynn( i ) also. By construction,yd

nn( i )
will be close toyd( i ), and thereforeyd11

nn ( i ) will automati-
cally end up being close toyd11( i ) and thus will not register
as a false neighbor, by the absolute criterion. If we ask
false neighbors evolve to macroscopic distances~that is, with
r on order of unity!, we must permit this to happen. Auto
correlated data and a short time delay will suppress this.
net effect is to again suppress observed false neighbors
smallerT. Thus we might erroneously infer a too-small em
bedding dimension as a result of choosing a small time de
With large enough autocorrelation, one will not registerany
false neighbors, despite the presence of an inappropriate e
bedding. It reduces confidence in the results when the ap
ent minimum embedding dimension changes drastically w
the time delay—much more than permitted by even a lo
interpretation of the embedding theorem. The standard
proach is to fix a time-delay presumed to be good by ano
means, such as the average mutual information crite
@14#. However, we have found some examples where
estimate of time delay may be excessively large, as when
reciprocal of the local Lyapunov exponent is large relative
the autocorrelation or mutual information time. That is,
regions of phase space where the system is especially
stable, average mutual information may yield a misleadin
large time delay for that section of phase space.

To overcome this problem, we apply a global linear tra
formation to the state space which removes all linear cr
correlation among the components and renders each
correlation unity. Withz denoting the transformed spacey
→z, this means that the cross correlation among compon

C~zi ,zj !5
1

N (
m51

N

@zi~m!zj~m!#5d i j , ~10!

i , j 51,2, . . . ,d, and we haveN total d-dimensional data
points. The mean is subtracted from they(m) vectors prior to
the transformation. Ifzd11(m) has no linear cross correlatio
with zd(m), then we will not suffer the problem mentioned
above. One well-known and standard transformation sati
ing this requirement is the rotation and stretching to norm
ized principal components; for instance one transforms td
11 dimensional principal coordinatesz, finds neighbors in
the d-dimensional subspace, and examines thed11 coordi-
nate for true and false strands.

This linear correlation between components is succe
fully removed but it presents a problem for our use, howev
the necessary global embedding dimension found in this
space maynot be the same as that of the original time-del
embedded space. For example consider a one-dimens
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quadratic map: withs(n11)5 f „s(n)…, the minimum em-
bedding dimension is one, and we see a parabola if we
the two-dimensional phase spacey(n)5@s(n11),s(n)#).
The linear transformation to principal coordinatesz5Ty in
two dimensions might rotate this parabola so that the m
ping is no longer one-to-one from the first coordinate ofz to
the second, meaning that the minimum embedding dim
sion is greater than 1 in this space. We require that the m
mum embedding dimension of the transformed space be
same as the original time-delay embedded space. In the
pendix we derive the rotation that preserves this propert
linear transformation ind11 dimensions fromy→z that not
only normalizes each component and eliminates linear c
correlation, but also guarantees that the firstd coordinates of
z are functions only of the firstd coordinates ofy. In z space
we find nearest neighbors ind dimensions, and examine th
difference between the (d11)th coordinates of neighbors—
which are now guaranteed to be linearly decorrelated fr
all the otherd coordinates, and have unit standard deviati
thus implying RA51. We may now hope to observe fals
neighbors or strands even when the embedding time dela
short.

IV. NUMERICAL RESULTS AND CONTRAST
WITH NOISE PROCESSES

A. Some numerical simulations

Our first example uses 25 000 data points generated f
the small atmospheric model of Lorenz@13#. Figures 4 and 5
show the global false neighbors statistic with~clear mesh!
and without~solid surface! the decorrelation transformation

FIG. 4. Proportion of false nearest strands as a function of t
delay~multiples ofts) and trial embedding dimension. 25 000 da
points were taken from the atmospheric model of Lorenz. The
rameters for the numerical simulation were as noted earlier in
text; ts50.05 which leads to a suggestedT517 from consider-
ations of average mutual information. The opaque surface inclu
neighbor decorrelation~strand! corrections but not the normalize
principal component transformation. The clear mesh adds the gl
linear decorrelation.
9-6
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FALSE NEIGHBORS AND FALSE STRANDS: A . . . PHYSICAL REVIEW E66, 026209 ~2002!
The average mutual information criterion suggestsT517 for
this data set. This falls into the range of our rule of thumb
being oversampled data, though not by much. NearT517,
the augmented global false neighbors criterion suggests
the best embedding dimension isdE56. This is certainly
consistent with a box counting dimensiondA'2.5. With
smaller time delays, starting below 11, the false neigh
statistic calculated on untransformed time-delay embed
data decreases rapidly for all dimensions due to the pr
ously mentioned systematic effect. The transformed d
however, show a very clear drop-off atd54 of the false
neighbors statistic from almost 40% to less than 1%. T
the method clearly demonstrates thatT57 and d54 is a
good embedding. The untransformed data also show a d
off to near zero atd54 for values ofT between 7 and 11, bu
the prudence suggests this may be a result of the st
downward bias in embedding dimension for small time d
lays. In this example, we find that a smaller dimensiondE
54 gives a good set of embedding coordinatesy(n) at T
57. The time delay ofT517 suggested by average mutu
information requiresdE56. It is important to note that, eve
theoretically, thatthe minimum necessary global embeddi
dimension need not be invariant with changing time de
because such a change constitutes a nonlinear change o
ordinates. What should be invariant is the local dimens
required to capture the dynamics and the correct numbe
Lyapunov exponents of the dynamics@18#. The decorrelation
transformation will allow one to safely employ smaller tim
delays than those necessary to ‘‘fill out the attractor’’~re-
move componentwise correlation! as chosen by method
such as average mutual information and still be confid
that a signal of few false neighbors isnot the result of auto-
correlation that masks detection of topological self-crossin

The message here is that there are many perfectly acc
able embedding spaces withdE.dA and dE less than the
sufficient condition indicated by the embedding theore
dE.2dA . The different embeddings all meet the criterion
zero ~or very small! proportion of false neighbors or fals
strands, if oversampling is an issue. The different emb
dings in the viewpoint we take here are all time-delay rec

FIG. 5. This is the same as Fig. 4 viewed from a different ang
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structions of phase space and differ in the choice of ti
delay. Different choices of time delay are different nonline
choices of coordinates for thedE-dimensional space, an
there is no reason why theglobal dimension required should
not change as we vary the time delay used. As noted
local dimension must be the same as that is the dimensio
the active dynamics. Fractal dimensions and Lyapunov ex
nents will be unaltered under these coordinate changes@11#.
The usual point of view has been to choose the time delaT
based on mutual information, and then to choosedE based on
false neighbors. It is entirely logical to choose bothT anddE
based on false strands, since each choice constitutes a d
ent choice of coordinate systems for the reconstruction of
dynamics. Presuming each choice has a sufficiently low p
portion of false strands, deterministic evolution is assu
and model making can proceed@11#.

B. Noise: White and colored

With the decorrelation transformation, the improved alg
rithm provides a good test distinguishing real low
dimensional dynamics from correlated, colored noise sign
This kind of noise~very high-dimensional dynamics! can
confuse standard false neighborlike tests. For example, if
spectrum is very red, falling rapidly as frequency increas
it implies strong autocorrelation, and thus with the previo
arguments, there could be few false neighbors or lack
determinism observed even though the dynamics are
mally infinite dimensional—even with a decorrelation co
rection in choosing neighbors.

Removing the linear correlations between component
prewhitening of the data and serves to give somewhat e
emphasis to all frequency components of the data. As
transformation of the Appendix is a linear transform of t
original data, it does no harm from the theoretical point
view of the embedding theorem. All local properties will b
preserved, and when there really are many degrees of f
dom in the signal, this whitening transformation will reve
them. Of course, whitening does tend to amplify nois
which may have the practical consequence of degrading
tistical quantities computed on low-dimensional attractors
constructed from somewhat noisy observations. We comm
that we are not performing the kind of bleaching that is d
recommended by Ref.@19#, where successive scalar residua
that occur after a linear fit is performed to the original da
are themselves reembedded into a new state space. Tha
cedure amplifies noise unacceptably, and does not nece
ily preserve topological invariants.

Consider vectors drawn from the samples of independ
white noise. The (d11)th component will have no relation
to the previousd components, and thus choosing near
neighbors in that space provides no help in predicting
(d11)th component. Thus the criterion for false neighbo

uzd11
nn 2zd11u.ra ~11!

will be met very frequently giving a high proportion of fals
neighbors: withra51 around 50% being typically seen a
zd11

nn and zd11 would be essentially uncorrelated scala
drawn randomly from the distribution. One would observe

.
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MATTHEW B. KENNEL AND HENRY D. I. ABARBANEL PHYSICAL REVIEW E 66, 026209 ~2002!
nearly constant and high level of false neighbors on the
solute test—independent of embedding dimension and t
delay. This is immediately distinguishable from those se
with low-dimensional dynamics.

The key observation is that this situation persistseven
with correlated noise. The reason is that our transformatio
removes all linear correlation among components, but th
is nothing else to the noise signal besides linear correlat
Therefore, when examining the evolution of neighbors in
transformed phase space, the noise appears effectively w
The present algorithm provides a very powerful and easy
interpret statistic to distinguish colored noise from authen
low-dimensional dynamics. Figure 6 shows the false nei
bors statistic for the low-dimensional dataset previously e
ployed compared with a surrogate noise dataset, constru
with a Fourier transform method, which has the same po
spectrum, and therefore the same autocorrelation struc
@20,21#. ~Furthermore, the two signals compared had
same approximate one-dimensional probability distribut
as a result of the ‘‘histogram transformation’’ on scalar o
servables as employed in Ref.@20#.!

The contrast is striking. Compared to the authentic sig
the noise results show a much higher level of false neighb
as well none of the characteristic changes seen on a dyn
cal signal with varying time delay and embedding dime
sion. The presence or absence of this variation with emb
ding parameters provides another immediately apparent
as to whether an unknown signal comes from lo
dimensional dynamics or an essentially stochastic sourc

We suggest to users familiar with the original algorith
@5# that when employing all the new corrections in this wo
the standard for an ‘‘acceptable’’ percentage of false stra
to deem a dataset sufficiently low dimensional be not
strict. The corrections preclude overcounting of close nei

FIG. 6. False nearest strands as a function of time delay and
embedding dimension. The opaque surface shows the original
dimensional signal from the model of Lorenz. The clear me
shows surrogate data: noise with same power spectrum as the
signal. The distinction is quite clear, and supports our forekno
edge that the original signal came from a low-dimensional dyna
cal system.
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bors and may amplify noise, including quantization err
Noise will result in a noise floor reasonably flat with embe
ding dimension. We point out that the analysis of Ref.@22#
should carry over for making a correction for uncorrelat
noise by loosening the criterion~6!. If one has knowledge of
the noise amplitude boundd on top of a low-dimensiona
signal one may include in the criterion a loosening to elim
nate ‘‘noise-induced’’ false neighbors.

uyd11~ i !2yd11
nn ~ i !u

RA
.ra12d. ~12!

In Ref. @22# the authors also consider the deviation due
high local expansion, i.e., a large Jacobian. We comment
a small region of very high expansion may be indistinguis
able from a false neighbor. Unfortunately given data alon
may be difficult to estimate the noise level and reliably ide
tifying regions of local expansion is even more difficult. On
would first need a good global and local embedding of
data that are required with the results of present algorith
Thus we do not consider such corrections in the subseq
results.

C. Last component shuffling, an alternative to surrogate data

Owing to the nature of the decorrelation transformatio
we can employ a slightly different ‘‘null test’’ that is faste
and easier than generating surrogate data sets with the
Fourier power spectrum and then recomputing the fa
neighbor statistic. With linearly correlated noise, thed
11)th coordinate is rendered a random variable independ
of the previous parts of the vector. Thus we can compute
level of false neighbors that one would expect from no
alone by assuming that the (d11)th coordinate has nothing
to do with the previous ones. This is accomplished by g
erating new vectorsz8 whose last component has bee
shuffled randomly among all the vectors in the database
by computing the proportion of false neighbors on this s
The choice of nearest neighbors depends only on the fird
components, which remain unchanged, thus one may use
actly the same indices of nearest neighbors as for the ac
data and no additional nearest neighbor search~which com-
prises the bulk of the computation time! is needed. The ad
ditional cost for the shuffled statistic is hence very low. F
ure 7 compares the results from a Fourier transform ba
surrogate dataset to those found by shuffling the last com
nent using the original dataset, after the decorrelation tra
formation. The shuffling technique predicts the approxim
level of false neighbors that one would see with surrog
data of colored noise. Though this may seem a very mi
technical detail, it is true that the shuffling and equivale
Fourier spectrum tests are not completely equivalent:
shuffling method will preserve the one-dimensional proba
ity distribution of the original signal whereas surrogate d
methods typically generate Gaussian distributions in ev
projection.

In some ways, the shuffling test is even more direct to
point than surrogate data. Assuming all linear correlation
been removed it asks ‘‘is there any predictable lo

ial
w-
h
rue
l-
i-
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FALSE NEIGHBORS AND FALSE STRANDS: A . . . PHYSICAL REVIEW E66, 026209 ~2002!
dimensional structure in the original data’’ by generati
what one would see if the answer were ‘‘no, one might ha
chosen that last coordinate at random.’’ At minimum, it
certainly far less computationally intensive than surrog
data methods, requiring only negligibly larger effort th
performing the false strands test to begin with.

The shuffling method provides a sharper test for lo
dimensional dynamics. One could easily perform the obvi
Monte Carlo simulation involving multiple shufflings an
derive the appropriate statistical hypothesis test compa
the false neighbors statistic of the original data to the dis
bution from an ensemble of shuffled sets. This appears t
to be overkill in many practical situations: given reasona
low-dimensional signals, the false neighbor statistic is po
erful enough and gives results easily distinguishable by
from those arising from colored noise.

This technique also gives correct results where Fou
surrogate data methods as in Refs.@20,21# may fail. We syn-
thesized an intentionally tricky highly oversampled data
which came from a few highly resonant oscillators driven
white noise. In signal processing language, there were p
in the z-plane transfer function very close to the unit circ
and thus some sharp peaks in the power spectrum. The
were, in fact, generated as a linear filter of Gaussian w
noise. Some of the characteristic frequencies were inte
multiples of each other, and some were not. The resul
time series was very smooth and resembled, even to the
perienced eye, low-dimensional chaotic data despite t
arising from a purely linear stochastic process. Figure
shows a time series segment of this dataset, and Figu
shows a three-dimensional state-space embedding. By v
inspection, this data looks low dimensional with interesti
phase-space structure, in contrast to the ‘‘tangled-spagh
phase-space appearance of broadband colored noise. N
all other tests we applied to this data set gave results ind
tive of low-dimensional chaos, including the Fourier spe

FIG. 7. Proportion of false nearest strands coming from~1! sur-
rogate data~clear surface!, noise with the same power spectrum
and ~2! data coming from shuffling the last component of the d
vector ~opaque surface!. The data were from the small Loren
model.
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trum surrogate data method@20#. In that method there is an
extra Kolmogorov-Smirnov test performed on prospect
surrogate data before they are accepted into the ensemb
valid surrogates. This check had to be disabled to get
results at all, otherwise all surrogates were rejected, corre
indicating the inapplicability of that test to this dataset.

Figure 10 shows the proportion of false neighbors for
noisy periodic data as well as its last component shuffl
counterpart. Here the level of false neighbors is very high
the original data and remains near the 50% seen with
shuffled set. It shows no interesting variation with embe
ding dimension or time delay, which we have seen is indi
tive of low-dimensional chaos. The present shuffling alg
rithm successfully and unequivocally distinguishes t
signal from authentic low-dimensional chaotic data. All t
computation necessary for Fig. 10 took less than 30 min o
standard SPARC 10 computer.

a

FIG. 8. A sample from a tricky synthetic time series which
noisy periodicity and only resembles chaos. The system was a li
filter of white noise, whose transfer function had poles very close
the unit circle in thez plane. More physically this is like noise
driving a number of extremely resonant linear oscillators.

FIG. 9. Time-delay embedding indE53 of the ‘‘noisy period-
icity’’ data set.
9-9
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MATTHEW B. KENNEL AND HENRY D. I. ABARBANEL PHYSICAL REVIEW E 66, 026209 ~2002!
Figure 11 shows the results applied to data which ar
static scalar nonlinear transformation (y5x3) of the previous
noisy periodicity dataset. In this case, the proportion of fa
neighbors is smaller than that seen with the shuffled data
the absolute level is not small and does not show the pro
structure with time delay and embedding dimension to in
cate chaos. The algorithm diagnoses these data as a non
transformation of noisy periodicity.

V. EXPERIMENTAL EXAMPLES

We now illustrate the above developments with examp
from numerical simulations and from laboratory data tak
from three sources:~1! Data from a chaotic nonlinear circui
~2! data from the chaotic fluctuations of a Nd:YAG~yttrium
aluminum garnet! laser with an intracavity doubling crysta
and ~3! data from the pressure fluctuations in a ‘‘fluidize
bed’’ of small particles.

FIG. 10. Opaque surface: Proportion of false nearest strand
the ‘‘noisy periodicity’’ dataset. Clear surface: The same w
shuffled last component on each vector.

FIG. 11. Opaque surface: The false strands for the noisy per
icity dataset with a time-independent nonlinear transformati
Clear surface: Same with shuffled last component on each vec
02620
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A. Electronic circuit

The first system is a clean nonlinear circuit described
greater detail in Refs.@23,24#. It consists of a nonlinear am
plifier @V→a f (V)# whose linear feedback loop has anRC1
low pass filter and anLC2 resonance. This is part of a
experimental setup intended for studying the synchroniza
of physical chaotic systems. Figure 12 shows the statistic
a dataset of voltages measured across one of the capac
This circuit is part of an experimental setup to investiga
chaotic synchronization@23,24#. This system is clearly low
dimensional, withd53 indicated as a good embedding d
mension over a range of time delays. Figure 13 show
different measurement of the attractor of the same circui
the same experimental parameters, but measuring the vo
across the other capacitor. Again, the test shows the data
emphatically more predictable than colored noise, indicat
a good embedding now atd54 across a wide plateau of tim

or

d-
.
r.

FIG. 12. Opaque surface: Proportion of false neighbors for
chaotic circuit described in the text. Clear surface: Same data
the last component of the vectors shuffled at random.

FIG. 13. Same computation for the nonlinear circuit as in F
12, but with a different measured output voltage.
9-10
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FALSE NEIGHBORS AND FALSE STRANDS: A . . . PHYSICAL REVIEW E66, 026209 ~2002!
delays. The behavior in thedE-T plane clearly indicates a
clean low-dimensional dynamical system~similar to results
seen with simulations of ODE’s!, as expected, given ou
knowledge of the physical system.

B. Laser

We now turn to the experimental data of beam intensi
of a Nd:YAG laser with nonlinear frequency doubling crys
in the cavity @25#. The first dataset examined came from
regime where a dynamical control scheme was able
operate—however, the control was not activated here
these data demonstrate the autonomous chaotic dynamic
trinsic to the laser. There were three electromagnetic mo
active in the laser cavity, all polarized in the same directi
The dataset was 100 000 points long, digitized with 8
precision recorded at a sampling rate of 2 MHz. Figure
shows a segment of the time series. For all calculations
these laser data, we set the decorrelation time intervaW
525 andra51.0.

Figure 15 shows the proportion of false strands evalua
on this data set. In contrast to the circuit data, the stati
does not converge to near zero for a sufficiently high emb
ding dimension. This is because, in contrast to the previ
data, this data set is quite noisy, both from experimen
quantization noise~about 0.4%! plus what are believed to b
fluctuations from spontaneous quantum emission~possibly
dynamically amplified! in the lasing medium itself. Never
theless there is a good minimum in the embedding stat
for dE53 andT53 or T54. As the embedding dimensio
increases past its best value, the statistic tends either to
teaus at a nonzero level or even starts to increase again.
is a result of using the normalized principal component tra
formation ~A5! that, as previously mentioned, tends to a
plify noise in higher coordinates.~The local maximum at
dE54 for some time-delays is apparently a spurious artif
of the particular state-space structure, as it vanishes u
mild filtering as seen below!. With chaotic signal with mod-
erate noise, as with these data, one typically sees aminimum
or at least a significant plateau in our statistic at a go

FIG. 14. Sample of time series from controllable Nd:YAG las
dataset. There is a strong natural periodicity.
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embedding dimension, in contrast to most other algorith
that usually demonstrate only a subtle ‘‘break’’ in the chan
of some quantity that may be very ambiguous when used
realistically nontrivial noisy data.

We attempted to separate noise from chaos with a sim
low-pass digital linear filter, and computed the false stra
statistic on the filtered data. Figure 16 shows the power sp
tral density of the original and the filtered signal. Despite t
appearance of this figure, the filtering was not particula
radical in reconstructed state space, eliminating only 1.4%
the power in the original signal. At frequencies below 1
kHz there was hardly any alteration of phase or amplitu
Figure 17 shows the false strands statistic. Now, there
very clear convergence atdE53 for short time delays, re-

r FIG. 15. Opaque surface: Proportion of false neighbors for
tensity fluctuations of the laser, for controllable dataset. The m
mum occurs atdE53, with time delayT54 in units of the sam-
pling interval, which is 0.5m s. Clear surface: statistic with las
vector component shuffled.

FIG. 16. Power spectral density of original and low-pass filte
laser intensity signal. Filter eliminates 1.4% of power in origin
signal.
9-11
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MATTHEW B. KENNEL AND HENRY D. I. ABARBANEL PHYSICAL REVIEW E 66, 026209 ~2002!
doubling our confidence in the low-dimensional nature of
signal. The fact that the statistic atdE52 is not all that large
is because the signal is, in fact, approximately periodic in
short term, and so can ‘‘almost’’ be embedded in two dime
sions.

Figure 18 compares the statistics for different time dela
The mutual information criterion@14# suggests usingT59 in
order to maximally decorrelate components of the st
space. In this case, the results suggest thatdE54 would be
necessary at this time delay. However, by using the spe
principal component transformation, we see that we can

FIG. 17. Opaque surface: Proportion of false neighbors for
tensity fluctuations of the controllable laser dataset passed throu
low-pass linear digital filter. A clear minimum at a value near ze
is seen atdE53 with time delays betweenT51 andT54 in units
of the sampling interval. Clear surface: same data with last com
nent shuffled.

FIG. 18. Lower solid curve: statistic for unfiltered dataset at b
~lowest minimum! time delay,T54. Lower dotted curve: statistic
for filtered dataset at best time delay,T52. Both these indicate
dE53. Upper solid curve: statistic for unfiltered dataset at tim
delay suggested by mutual information,T59. Upper dotted curve:
statistic for filtered dataset at same time delay,T59.
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fact, employ a smaller embedding dimension by going
smaller time delays, which also results in a smaller statis
implying a ‘‘more deterministic’’ mapping.~Noise, a more
complicated attractor, and finally high local Lyapunov exp
nents can mimic the effect of topologically false neighbor!
The transformation ensures that the improvement in the
tistic is not illusory, reflecting only correlation betweend
11 and the previousd vector components. It must be admi
ted that the normalization in the transformation amplifi
noise by effectively taking differences, but we emphas
that one neednot continue to employ this transformed spa
in further analysis, prediction, or control of the system. B
our special construction that distinguishes our transforma
from the standard principal components transformation,
topological properties of this space are the same as thos
the untransformed time-delay embedded space with the s
time delay—including the presence or absence of dyna
cally illegal self-intersections. Therefore, if one finds th
dE53 is good atT52 or T54 viewed in the transformed
space, one can then use the ordinary time-delay embed
space atT52 or T54, knowing that it has been topolog
cally unfolded. Incidentally, the false strands statistic atT
59 computed on the untransformed space also show
minimum/plateau atdE54 but at a much smaller level of th
statistic, as a result of the lack of noise amplification. T
statistic computed belowT55 or so on the untransforme
space is zero everywhere. The fact that we seedE54 both
with and without the transformation atT59 reinforces the
conclusion thatdE54 is genuine and we need not worry th
T59 does not still show effects of linear correlation. Th
message is that examining the statistic on data subjecte
the global linear transformation increases confidence in
validity of the result even if the original vector space is e
ployed for later purposes. Finding an embedding that wo
with three dimensions instead of four may be quite sign
cant, as there are sophisticated topological analyses of at
tors based on linking numbers of embedded periodic or
whose mathematics only works properly in three dimensio

We turn to another dataset from the same laser operate
different physical parameters, such that the experime
control scheme fails to operate. An off-line Fabry-Perot
terferometer shows that there now seem to be three ele
magnetic modes in one polarization and two in the other
active in this dynamical system. Again there were 100 0
data points at a sampling rate of 2 MHz. The dynamics
pears more complicated—the strong approximate periodi
seen in the previous dataset is no longer obvious.~Fig. 19!.
Figure 20 shows the false strand results. In comparison to
shuffled data results, we identify this dataset as chaotic,
higher dimensional and noisier than the previous one, as
proportion of false strands never reaches a very small va
The best minimum seems to occur atdE54 at T52, with
the statistic remaining relatively constant or slightly increa
ing for higher dimensions, as expected with noise. ForT
53 andT54 the statistic also appears to plateau atdE54,
lending some confidence that the value found atT52 is
correct. Minimum embedding dimension is not invaria
with time delay, but often does not change drastically.
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FALSE NEIGHBORS AND FALSE STRANDS: A . . . PHYSICAL REVIEW E66, 026209 ~2002!
T51 the amplification of noise in the global decorrelati
appears to make results worse.

As with the controllable dataset seen before, these d
have a substantial amount of noise, and so we run the a
rithm on a low-pass filtered version of the data. Figure
shows power spectra for original and filtered signal. Fig
22 demonstrates the improvement that the low-pass filte
has made, as seen by the lower false strand statistic, a m
mum statistic of 3.5% false strands, less than half the m
mum value seen without filtering. The results now demo
strate evidence of low dimensionality. For further analys

FIG. 19. Sample of time series from uncontrollable Nd:YA
laser dataset.

FIG. 20. Opaque surface: Proportion of false strands for int
sity fluctuations of the laser, for uncontrollable dataset. The m
mum occurs atdE54, with time delayT52 in units of the sam-
pling interval, which is 0.5ms. Compared with the controllabl
dataset, these data require a higher embedding dimension and
more noise. Mutual information time isT55, which doesnot pro-
vide a good embedding, as can be seen by the high absolute lev
false strands at that time delay, as well as the absence of any
indication ofdE . Clear surface: statistic with the last vector com
ponent shuffled.
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ta
o-
1
e
g
ni-
i-
-
,

we would recommend using an embedding dimensiondE
54 and time delayT52. The decorrelation global linea
transformation is not strictly necessary, and a pure tim
delay embedding does not introduce the transformatio
noise amplification but has significant autocorrelation. T
mutual information criterion@14# recommended the use o
T55 which unfortunately did not give a clear indication
the embedding dimension. The freedom inT allowed by our
method permitted us to search for an embedding that d
show honest evidence of low-dimensionality. Without t
principal component transformation we would have been
quired to stay atT55, which did not show convincing low
dimensionality on this realistically difficult experimenta
dataset. The filtering was not particularly severe, eliminat

-
i-

ave

l of
ear

FIG. 21. Power spectral density of original and low-pass filte
laser intensity signal, uncontrollable dataset. Filter elimina
0.86% of power in original signal.

FIG. 22. Opaque surface: Proportion of false strands for int
sity fluctuations of the laser, for low-pass filterd version of unco
trollable dataset. Good minima occur atdE54, with time delayT
51 or T52. Clear surface: statistic with last vector compone
shuffled.
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MATTHEW B. KENNEL AND HENRY D. I. ABARBANEL PHYSICAL REVIEW E 66, 026209 ~2002!
only 0.86% of the power in the original signal. Figure 2
superimposes the filtered and original signals. Because o
properties of the decorrelation transformation we can be
sured the improvement in the results was not spurious—
artifact of the filter low dimensionality out of a high
dimensional noise signal The phase-space structures of o
nal and filtered signals appear reasonably similar to the

Filters with either lower or higher cutoff frequencies d
not appear to give as good results as that shown previo
considering the best result to be that which gives the dee
minimum in the statistic. Less filtering left too much noise
the signal, and more filtering apparently harmed the rec
structed phase-space structure, resulting in less clear
dence of chaos, and thus a higher statistic. The false st
statistic now provides a nontrivial criterion to choose t
type and amount of filtration that gives the most clea
low-dimensional signal. We emphasize this is ‘‘blind’’ nois
reduction—we have no specific model for the system—a
so it is quite significant to have an independent means
evaluate the success of the filtering. In this regard a sim
‘‘empirical prediction error’’ criterion could be fooled; a ver
severe low-pass filter can result in extremely smooth d
that are very predictable in the short term, yet do not hav
low-dimensional deterministic embedding. We anticipate t
noise reduction methods designed specifically for cha
data@26# would work better than the simple filter employe
here, and that our statistic would be useful as an arbite
how much cleaning by these algorithms one should emp

C. Fluidized bed

Our final experimental example is a pressure time se
from a fluidized bed experiment. The apparatus was a 2.
long hollow tube of 10 cm inner diameter. A quantity
575 mm micron mean diameter stainless steel bearings
subjected to a regulated upward flow of air from a distribu
plate on the bottom of the tube. With sufficient air flow, t
mass of particles become suspended and possess ‘‘fluid
behavior, hence the name. With slightly higher air flow, t

FIG. 23. Closeup of filtered~solid line! and original~circles!
uncontrollable laser dataset. The filtering only smooths and does
otherwise change gross characteristics of the time series.
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system demonstrates a number of complicated dynamica
gimes, one of which we briefly examined. The experime
itself is an idealized model of particulate transport devic
used in industrial applications. The quantity measured w
from a differential pressure transducer taken between 23
and 35 cm above the air input grate, which defines the b
tom. The pressure output at each cross section was the
age of four individual sensors distributed around the circu
ference of the device. The data, 60 000 points in total, w
digitized at 12 bits at 200 Hz.

In the regime examined, the data seem to exhibit appro
mately periodic or chaotic behavior with a clear natural f
quency viewed by the eye~Fig. 24!. Chaos might be a likely
hypothesis, but the results of the false strand statistic surp
ingly suggest otherwise. Figure 25 demonstrates a high le
of false strands that is nearly completely independent of t
delay and embedding dimension. There is no compelling e
dence for low dimensionality in these data, with a noisy l
ear system with a sharp resonance being a reasonable
native. The overall level is lower than that seen with shuffl
data, indicating the presence of some sort of nonlinearity.
note that the Fourier transform surrogate data method@20#
rejected its null hypotheses of linearly correlated noise a
the same warped with a static nonlinearity on this data
implying that the dataset was more predictable to a stat
cally significant degree. It is not clear whether this is beca
the data authentically do not fit either null hypothesis,
whether this is because of the finite-frequency resolut
flaw inherent in the Fourier transform method when appl
to a signal with a significant dominant frequency. The fa
strand method appears to be more useful in positively id
tifying low dimensionality when one looks for proper stru
ture with T anddE to indicate chaos. The older false neig
bors method @5# showed ambiguous results that cou
potentially have been construed as indicating adE56 em-
bedding; the strand correction of this paper eliminated t
spurious decrease with increasingdE , and the decorrelation
transformation eliminated systematic changes withT.

ot FIG. 24. Fluidized bed pressure time series. There is a str
natural periodicity.
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VI. DISCUSSION AND CONCLUSION

The essential idea behind our method and nearly all o
methods to determine the minimum necessary embed
dimension from data is to identify or quantify the prevalen
of local phase-space regions where the crossing of or
indicates inability to predict where orbits should go—that
it is an indication that in the embedding dimension chos
the system is not deterministic.

For example, Casdagli@27# recommends constructin
nonlinear empirical predictors that approximate the unkno
implied dynamical system using the observed data, and
seeing where the measured average prediction error drop
sharply with increasing embedding dimension. This is a s
in the right direction, as it is sensitive to the accidental la
of determinism, but we wish to have a specific and e
method that directly attacks the minimum embedding dim
sion problem. With complicated prediction functions—
designed to give good predictions, but not calculate emb
ding dimension—one has to consider systematic variation
performance with dimensionality that are independent of
topological question of determining the embedding dim
sion.

Good empirical predictors are not necessarily the b
tests of minimum embedding dimension. Most statistics
this nature, and indeed most alternative methods propo
for determining embedding dimension@28–31#, employ vari-
ous kinds of averaging that seem to obscure the desired
sult. The first question is whether to compute an aver
quantity over some neighborhood. If one is interested
goodpredictionsthen this is beneficial, as it averages out t
effect of noise and aids statistical precision in the fitting p
cesses. The consequence of an incorrect embedding is
low-level noise but occasional self-crossings that resul
macroscopicdivergences at future iterations. Including

FIG. 25. Opaque surface: False strand statistic for fluidized
pressure signal. Clear surface: Statistic for shuffled last compon
The fact that the opaque surface is below the level of the c
surface indicates the presence of nonlinearity, but the absenc
structure in theT-d plane and the relative high value of the statis
does not support the hypothesis of low-dimensional chaos. N
periodicity is the more likely diagnosis.
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false neighboring trajectory along with good neighbors w
certainly result in a poorer fit overall and hence higher err
but this is a roundabout method of finding incorrect emb
dings, as one cannot distinguish this situation from t
where the general error level is high due to other reaso
including bad choices of model. There is no chance tha
self-crossing would be missed when counting single nea
neighbors, as one examines the entire reference trajec
The point is that one is interested only in theextreme events
likely to result from misembedding, not a typical predictio

There is also an advantage to having an easily interpre
absolute scale for the statistic in contrast to the one wh
one examines relative changes with trial embedding dim
sion. That is, convergence to a small proportion of fa
strands, for example 1%–5%, suggests a good embeddin
low-dimensional chaos in contrast to convergence at 20%

One also would like to eliminate systematic effects th
change with dimension. One of the most frequently enco
tered problems is that the typical distance to nearest ne
bors increases substantially as dimension is increased w
out regard to self-crossing. This means that statistics ba
on ratios of vector distances will often have a strong b
with dimension, usually resulting in more apparent ‘‘predic
ability’’ as dimension is increased. This fact also makes
amining a fixed-sized neighborhood problematic as the
evant distances change with trial dimension. A fixed num
of neighbors is thus easier, and if one takes that to its log
conclusion, one ends up examining single nearest neighb

Finally, we believe that the problems we examined w
oversampled data would show up in any local phase-sp
statistic. It is not at all clear to us how to correctly accou
for a high sampling rate with statistics substantially mo
complicated than false nearest neighbors.

Most published techniques developed to distinguish ch
from colored linear noise have relied on the surrogate d
technique~with the exception of time-reversibility methods!.
An exhaustive list would be excessively long, but we po
out Ref.@32# which advocated the use of surrogate data a
backstop against spurious observation of low false neighb
in correlated time series seen in the original false neighb
method of Ref.@5#. There are some undesirable technicalit
with surrogate data methods and our direct alternative m
be an attractive alternative. Typically surrogates are c
structed by inverting a phase-randomized version of the
crete Fourier transform of the signal. In generating surrog
data, the Fourier transform assumes that the signal ha
period equal to the length of the dataset, i.e., the signal wr
back around and repeats itself. If the first and last points
the scalar signal do not ‘‘match’’~and usually they do not!
the effect is to introduce what looks like a sharp discontin
ity which translates into more high frequency power th
there should be. If the original data is reasonably noisy th
this end effect has little consequence. If, however, the or
nal dataset is smooth~little power in high frequencies!, then
the surrogate datasets made from the Fourier transf
method will have noticeably higher frequency noise beca
the Fourier transform was sensitive to a high-frequen
containing discontinuity in the signal. If the original da
were just very smooth colored noise then this test will sp
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MATTHEW B. KENNEL AND HENRY D. I. ABARBANEL PHYSICAL REVIEW E 66, 026209 ~2002!
riously reject the null hypothesis because the surrogates
be less predictable than the original due to this exces
higher frequency noise. There is the minor issue that
simplest efficient subroutines for discrete Fourier transfo
only operate on datasets sized in powers of two, whereas
technique presented in this work has no such restriction.

In many ways the surrogate data technique is oftentoo
powerful—‘‘power’’ in the purely statistical sense—becau
it can easily sense a deviation from the particular null p
cess embodied in the surrogates, but without giving furt
insight into the nature of the rejection. The data may be fr
some sort of noise process with a nonlinearity somew
different from the Gaussianizing histogram transformatio
often used in simple null hypotheses@20,21#. Local predic-
tion error statistics used frequently in surrogate data meth
are designed to show a distinct difference with lo
dimensional chaos, and so a very clear rejection of its n
hypothesis over many time delays and a plateau with incr
ing d often suggests low dimensionality, but in our opinio
not as convincingly as low proportion of false strands in
absolute scale. In surrogate data methods one looks
strong predictability relative to appropriately constructe
colored noise. There is no way to know just how much m
predictable one should be with deterministic chaos. W
false strands, we do know that, at least, in principle,
statistic should go tozerowhen we have a deterministic pro
cess unfolded in the correct embedding dimension.

In sum, we have demonstrated an algorithm to find
minimum embedding dimension from observed data. It
fers a number of advantages over previous approaches,
as follows.

~1! Consideration of effects due to high sampling ra
data. Large amounts of well sampled data are often desir
for state-space algorithms and statistics, as they trace ou
attractor well. Changes in sampling rate irrelevant to fun
mental dynamics can cause systematic changes with m
statistical quantities, often giving spurious tendencies tow
indicating low dimensionality. The strand concept is a in
itively attractive and experimentally successful counterm
sure.

~2! Consideration of effects due to high autocorrelatio
which often comes with well sampled data of chaotic flow
The normalized principal component transformation elim
nates all linear correlation between components of the s
space and thus many systematic convergences of emp
statistics as the time delay gets short. This permits on
explore a wider range of time delays than if one were
quired to keepT sufficiently large to ensure component wi
decorrelation with an ordinary embedding. We have seen
amples where time delays smaller than those normally
ployed appear to give cleaner embeddings at a lower dim
sion and a more secure indication of low dimensionality.
constructively demonstrate an orthogonal rotation of
standard principal coordinate space that ensures the topo
cal answer found in the transformed space remains valid
the untransformed time-delay embedding space.

~3! The elimination of the systematic tendencies push
down the old false neighbor statistic for smallT allows one
to plot our statistic over the entiredE-T plane. Authentic
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low-dimensional data show a characteristic behavior, w
false strand proportion bottoming out or plateauing once
correctdE has been achieved, and with the overall level
false strands increasing past the optimalT ~because of cha-
otic decorrelation, and a global increase in the complex!
of the reconstructed attractor, and with the statistic som
times increasing below the bestT as noise is further ampli-
fied.

~4! By comparison to results seen when shuffling the l
component, the statistic gives a good practical of easily d
tinguishing chaos from colored noise. It requires much l
computation than the standard surrogate data approach
addition, it successfully distinguishes noisy periodicity a
other intentionally tricky highly resonant linear systems fro
low-dimensional chaos; these may frequently fool surrog
data methods. We do not present results using a more ri
ous null hypothesis test, though this test is obvious in c
struction given the sets of extra distances on original a
shuffled data. We feel that as a way of positively identifyi
low-dimensional predictability instead of a mere rejection
a null, the presence of characteristic behavior indE-T as well
as a reasonably small absolute value of the statistic is m
compelling than just a rejection of a particular null test.

Given the comparative simplicity and low computation
resources necessary for this algorithm, we believe it to b
useful tool as a ‘‘first look’’ into the nonlinear dynamica
characteristics of many kinds of experimental signals, in
way that the Fourier transform is a window into gross fr
quency domain behavior and other linear features in
system.1
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APPENDIX: DECORRELATION TRANSFORMATION

With a largeN•(d11) matrix A of the y vectors of the
dataset,A i j 5y( i ) j , we compute the singular value decom
position with conventional algorithms,

A5UDVT ~A1!

with U and V orthogonal andD diagonal. With these, the
transformation to normalized principal coordinates is

1See Ref.@33#.
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B5AV
1

N1/2
D21, ~A2!

with B theN•(d11) matrix of transformed vectorsz. In this
framework, the cross correlation requirement is satisfied

1

N
BTB5I . ~A3!

We apply an additional orthogonal rotation designed s
that the firstd coordinates in the new state space are a fu
tion of only the firstd coordinates of the original delay spac
If the transformation to principal coordinates isB5AT then
it is easy to show that any additional orthogonal rotationC
5BQ5ATQ preserves the identity cross-correlation matr
For our purposes we need not preserve the other proper
the conventional principal coordinates transformation—t
the projection of the data along each axis has the maxim
variance/power not accounted for by previous axes. It t
suffices to find an orthogonal matrixQ such thatTQ has
zeros all along the bottom row except for the last colum
This ensures that the firstd columns ofC, the transformed
state space, only depend on the firstd columns ofA, the
original time-delayed space. We constructively find suc
matrix as follows. Take the (d11)3(d11) matrix T
5N21/2VD21 and extract the last rowxj5Td11,j . Then the
necessary orthogonal transformation is

Q5H~x2uxued11!, ~A4!

with ed11 the unit vector in the (d11)th direction, and the
Householder matrix@15# H(z)5I 22zzT/uzu2. In this coordi-
s.

s.

-
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nate system, it is a fortuitous coincidence that the sp
formed by the firstd components is an orthogonal rotation
the space we would get if we had performed an ordin
normalized principal component transformation on t
d-dimensional time-delayed embedded vectors. To sum
theN by d11 matrix of vectorsB that we actually embed to
find false strands is

B5AS V
D21

AN
D Q5AF ! ! ! !

! ! ! !

A � A

0 0 zeros !

G . ~A5!

The standard and modified rotation to principal coor
nates share a common feature: at least for small time del
successively higher coordinates correspond to success
higher orders of derivatives@16#. This means that higher
dimensional embeddings processed by a normalized pri
pal component transformation will tend to successively a
plify noise and thus increase the proportion of observed fa
neighbors as the test examines the last, and therefore no
component. The (d11)th component of the transforme
space is similar to a finite difference approximation of t
dth derivative of the signal. We mention that any prerotati
one might attempt on the standard principal compone
space~to distribute the noise across all components! is un-
done by the rotation in Eq.~A4!. This is the price that one
pays for ensuring no linear correlation among compone
and requiring the only last component of the transform
space depends on the last component of the initial space.
transformations in this section cure the problems found
Ref. @17#.
sica

,

A

@1# J.P. Eckmann and D. Ruelle, Rev. Mod. Phys.57, 617 ~1985!.
@2# T. Sauer, J.A. Yorke, and M. Casdagli, J. Stat. Phys.65, 579

~1991!.
@3# M. Ding et al., Phys. Rev. Lett.70, 3872~1993!.
@4# D.T. Kaplan and L. Glass, Phys. Rev. Lett.68, 427 ~1992!;

D.T. Kaplan and L. Glass, Physica D64, 431 ~1993!.
@5# Matthew B. Kennel, R. Brown, and H.D.I. Abarbanel, Phy

Rev. A45, 3403~1992!.
@6# J.H. Friedman, J.L. Bentley, and R.A. Finkel ACM Tran

Math. Softw.3, 209 ~1977!.
@7# R.F. Sproull, Algorithmica6, 579 ~1991!.
@8# J. Theiler, Phys. Rev. A34, 2427~1986!.
@9# J. Theiler, Phys. Rev. A41, 3038~1990!.

@10# J. Theiler, Phys. Lett. A155, 480 ~1991!.
@11# H.D.I. Abarbanel, R. Brown, J. Sidorowich, and Lev Sh. Tsim

ring, Rev. Mod. Phys.65, 1331~1993!.
@12# A.R. Osborne and A. Provenzale, Physica D35, 357 ~1989!.
@13# E.N. Lorenz, Tellus, Ser. A36A, 98 ~1984!.
@14# A.M. Fraser and H.L. Swinney, Phys. Rev.33A, 1134~1986!.
@15# G.H. Golub and C.F. Van Loan,Matrix Computations~Johns
Hopkins University Press, Baltimore, 1989!.
@16# J.F. Gibson, J.D. Farmer, M. Casdagli, and S. Eubank, Phy

D 57, 1 ~1992!.
@17# D.R. Fredkin and J.A. Rice, Phys. Rev. E51, 2950~1995!.
@18# H.D.I. Abarbanel and M.B. Kennel, Phys. Rev. E47, 3057

~1993!.
@19# J. Theiler and S. Eubank, Chaos3, 771 ~1993!.
@20# M.B. Kennel and S. Isabelle, Phys. Rev. A46, 3111~1992!.
@21# J. Theileret al., Physica D58, 77 ~1992!; D. Prichard and J.

Theiler, Phys. Rev. Lett.73, 951 ~1994!.
@22# C. Rhodes and M. Morari, Phys. Rev. E55, 6162~1997!.
@23# R. Brown, N. Rulkov, and E. Tracy, Phys. Rev. E49, 3784

~1994!.
@24# N. Rulkov, A. Volkovskii, A. Rodriguez-Lozano, E. Del Rio

and M. Velarde, Int. J. Bifurcation Chaos Appl. Sci. Eng.2,
669 ~1992!.

@25# H.D. I Abarbanel, Z. Gills, C. Liu, and R. Roy, Phys. Rev.
53, 440 ~1996!

@26# E.J. Kostelich and T. Schreiber, Phys. Rev. E48, 1752~1993!.
9-17



tt

ez

://
lec-
//
No.
d-

at,

MATTHEW B. KENNEL AND HENRY D. I. ABARBANEL PHYSICAL REVIEW E 66, 026209 ~2002!
@27# M. Casdagli, Physica D35, 335 ~1989!.
@28# W. Liebert, K. Pawelzik, and H.G. Schuster, Europhys. Le

14, 521 ~1991!.
@29# K. Pyragas and A. Cenys, Litov. Fiz. Sb.27, 437 ~1987!.
@30# J. Gao and Z. Zheng, Phys. Lett. A181, 153 ~1993!.
@31# R. Huerta, C. Santa Cruz, J.R. Dorronsoro, and V. Lop

Phys. Rev. E49, 1962~1994!.
@32# R. Hegger and H. Kantz, Phys. Rev. E60, 4970~1999!.
02620
.

,

@33# FORTRAN90source code andX86 Linux binary software to per-
form the false strand calculation is available at ftp
lyapunov.ucsd.edu/pub/nonlinear/fns.tgz and at the AIP E
tronic Physics Auxiliary Publication Service, http:
www.aip.org/pubservs/epaps.html. See EPAPS Document
E-PLEEE8-66-021208, which includes EPAPS files Rea
me.TXT, false_Strands_f90.f90, fns_linux_binary, lor84x.d
and installation.txt
9-18


